Menu Close

Question-185394




Question Number 185394 by mathlove last updated on 21/Jan/23
Answered by mr W last updated on 21/Jan/23
P×(3^2^0  −1)=(3^2^1  −1)(3^2^1  +1)...(3^2^n  +1)  ...  P×(3^2^0  −1)=(3^2^n  −1)(3^2^n  +1)  P×(3^2^0  −1)=3^2^(n+1)  −1  ⇒P=((3^2^(n+1)  −1)/(3^2^0  −1))=((3^2^(n+1)  −1)/2)
$${P}×\left(\mathrm{3}^{\mathrm{2}^{\mathrm{0}} } −\mathrm{1}\right)=\left(\mathrm{3}^{\mathrm{2}^{\mathrm{1}} } −\mathrm{1}\right)\left(\mathrm{3}^{\mathrm{2}^{\mathrm{1}} } +\mathrm{1}\right)…\left(\mathrm{3}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$$$… \\ $$$${P}×\left(\mathrm{3}^{\mathrm{2}^{\mathrm{0}} } −\mathrm{1}\right)=\left(\mathrm{3}^{\mathrm{2}^{{n}} } −\mathrm{1}\right)\left(\mathrm{3}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$$${P}×\left(\mathrm{3}^{\mathrm{2}^{\mathrm{0}} } −\mathrm{1}\right)=\mathrm{3}^{\mathrm{2}^{{n}+\mathrm{1}} } −\mathrm{1} \\ $$$$\Rightarrow{P}=\frac{\mathrm{3}^{\mathrm{2}^{{n}+\mathrm{1}} } −\mathrm{1}}{\mathrm{3}^{\mathrm{2}^{\mathrm{0}} } −\mathrm{1}}=\frac{\mathrm{3}^{\mathrm{2}^{{n}+\mathrm{1}} } −\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mathlove last updated on 21/Jan/23
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *