Menu Close

Montrer-que-x-R-cos-sinx-gt-sin-cosx-




Question Number 120029 by Ar Brandon last updated on 28/Oct/20
Montrer que ∀x∈R  cos(sinx)>sin(cosx)
$$\mathrm{Montrer}\:\mathrm{que}\:\forall\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{cos}\left(\mathrm{sinx}\right)>\mathrm{sin}\left(\mathrm{cosx}\right) \\ $$
Commented by soumyasaha last updated on 29/Oct/20
    π/2 ≈ 1.57   and (√2) ≈ 1.41    ∴ (√2) < π/2    Now,  sin(x+π/4) ≤ 1              ⇒ (√2) sin(x+π/4) ≤ (√2)  < π/2          ⇒ (√2) (sinxcos(π/4)+cosxsin(π/4))  < π/2          ⇒ (√2) (sinx.(1/( (√2)))+cosx.(1/( (√2))))  < π/2          ⇒ sinx+cosx  < π/2          ⇒ cosx  < π/2−sinx          ⇒ sin(cosx)  < sin(π/2−sinx)                            [∵ sinx is an increasing function]          ⇒ sin(cosx)  < cos(sinx)          ⇒  cos(sinx) > sin(cosx)
$$\:\:\:\:\pi/\mathrm{2}\:\approx\:\mathrm{1}.\mathrm{57}\:\:\:\mathrm{and}\:\sqrt{\mathrm{2}}\:\approx\:\mathrm{1}.\mathrm{41} \\ $$$$\:\:\therefore\:\sqrt{\mathrm{2}}\:<\:\pi/\mathrm{2} \\ $$$$\:\:\mathrm{Now},\:\:\mathrm{sin}\left(\mathrm{x}+\pi/\mathrm{4}\right)\:\leqslant\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\sqrt{\mathrm{2}}\:\mathrm{sin}\left(\mathrm{x}+\pi/\mathrm{4}\right)\:\leqslant\:\sqrt{\mathrm{2}}\:\:<\:\pi/\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\sqrt{\mathrm{2}}\:\left(\mathrm{sinxcos}\frac{\pi}{\mathrm{4}}+\mathrm{cosxsin}\frac{\pi}{\mathrm{4}}\right)\:\:<\:\pi/\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\sqrt{\mathrm{2}}\:\left(\mathrm{sinx}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\mathrm{cosx}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\:\:<\:\pi/\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{sinx}+\mathrm{cosx}\:\:<\:\pi/\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{cosx}\:\:<\:\pi/\mathrm{2}−\mathrm{sinx} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{sin}\left(\mathrm{cosx}\right)\:\:<\:\mathrm{sin}\left(\pi/\mathrm{2}−\mathrm{sinx}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\because\:\mathrm{sinx}\:\mathrm{is}\:\mathrm{an}\:\mathrm{increasing}\:\mathrm{function}\right] \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{sin}\left(\mathrm{cosx}\right)\:\:<\:\mathrm{cos}\left(\mathrm{sinx}\right) \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\:\mathrm{cos}\left(\mathrm{sinx}\right)\:>\:\mathrm{sin}\left(\mathrm{cosx}\right) \\ $$
Commented by Ar Brandon last updated on 29/Oct/20
Thanks Sir

Leave a Reply

Your email address will not be published. Required fields are marked *