Menu Close

calculate-0-cos-e-x-2-1-x-2-dx-




Question Number 54573 by Abdo msup. last updated on 07/Feb/19
calculate ∫_0 ^∞    ((cos(e^(−x^2 ) ))/(1+x^2 ))dx
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({e}^{−{x}^{\mathrm{2}} } \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\: \\ $$
Commented by maxmathsup by imad last updated on 08/Feb/19
let I =∫_0 ^∞   ((cos(e^(−x^2 ) ))/(1+x^2 ))dx ⇒ I =(1/2)∫_(−∞) ^(+∞)   ((cos(e^(−x^2 ) ))/(1+x^2 ))dx ⇒  2I =Re( ∫_(−∞) ^(+∞)   (e^(ie^(−x^2 ) ) /(1+x^2 ))dx)  let consider the complex function   ϕ(z) =(e^(ie^(−x^2 ) ) /(1+z^2 ))  the poles of ϕ are i and −i  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπRes(ϕ,i)  but ϕ(z)=(e^(ie^(−z^2 ) ) /((z−i)(z+i))) ⇒  Res(ϕ,i) =(e^(ie) /(2i)) ⇒∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (e^(ie) /(2i)) =π(cos(e)+isin(e)) ⇒  2I =π cos(e) ⇒ I =(π/2) cos(e) .
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({e}^{−{x}^{\mathrm{2}} } \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\Rightarrow\:{I}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({e}^{−{x}^{\mathrm{2}} } \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:={Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{ie}^{−{x}^{\mathrm{2}} } } }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right)\:\:{let}\:{consider}\:{the}\:{complex}\:{function}\: \\ $$$$\varphi\left({z}\right)\:=\frac{{e}^{{ie}^{−{x}^{\mathrm{2}} } } }{\mathrm{1}+{z}^{\mathrm{2}} }\:\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left(\varphi,{i}\right)\:\:{but}\:\varphi\left({z}\right)=\frac{{e}^{{ie}^{−{z}^{\mathrm{2}} } } }{\left({z}−{i}\right)\left({z}+{i}\right)}\:\Rightarrow \\ $$$${Res}\left(\varphi,{i}\right)\:=\frac{{e}^{{ie}} }{\mathrm{2}{i}}\:\Rightarrow\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{{ie}} }{\mathrm{2}{i}}\:=\pi\left({cos}\left({e}\right)+{isin}\left({e}\right)\right)\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\pi\:{cos}\left({e}\right)\:\Rightarrow\:{I}\:=\frac{\pi}{\mathrm{2}}\:{cos}\left({e}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *