Menu Close

Such-That-a-n-1-C-r-n-1-n-C-r-n-r-1-b-n-C-0-n-C-2-n-C-4-n-C-1-n-C-3-n-C-5-2-n-1-




Question Number 54646 by gunawan last updated on 08/Feb/19
Such That  a. _(n+1) C_r =(((n+1). _n C_r )/((n−r+1)))  b. _n C_0 +_n C_2 +_n C_(4...) =_n C_1 +_n C_3 +_n C_(5...) =2^(n−1)
$$\mathrm{Such}\:\mathrm{That} \\ $$$$\mathrm{a}.\:_{{n}+\mathrm{1}} {C}_{{r}} =\frac{\left({n}+\mathrm{1}\right).\:_{{n}} {C}_{{r}} }{\left({n}−{r}+\mathrm{1}\right)} \\ $$$$\mathrm{b}.\:_{{n}} {C}_{\mathrm{0}} +_{{n}} {C}_{\mathrm{2}} +_{{n}} {C}_{\mathrm{4}…} =_{{n}} {C}_{\mathrm{1}} +_{{n}} {C}_{\mathrm{3}} +_{{n}} {C}_{\mathrm{5}…} =\mathrm{2}^{{n}−\mathrm{1}} \\ $$$$ \\ $$
Answered by Kunal12588 last updated on 08/Feb/19
LHS=^(n+1) C_r =(((n+1)!)/(r!(n+1−r)!))  =(((n+1)n!)/(r!(n+1−r)(n−r)!))=((n+1)/(n−r+1))×((n!)/(r!(n−r)!))  =(((n+1) ^n C_r )/((n+1−r)))=RHS   proved
$${LHS}=^{{n}+\mathrm{1}} {C}_{{r}} =\frac{\left({n}+\mathrm{1}\right)!}{{r}!\left({n}+\mathrm{1}−{r}\right)!} \\ $$$$=\frac{\left({n}+\mathrm{1}\right){n}!}{{r}!\left({n}+\mathrm{1}−{r}\right)\left({n}−{r}\right)!}=\frac{{n}+\mathrm{1}}{{n}−{r}+\mathrm{1}}×\frac{{n}!}{{r}!\left({n}−{r}\right)!} \\ $$$$=\frac{\left({n}+\mathrm{1}\right)\:\:^{{n}} {C}_{{r}} }{\left({n}+\mathrm{1}−{r}\right)}={RHS}\:\:\:{proved} \\ $$
Commented by gunawan last updated on 08/Feb/19
thank you Sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$
Answered by Kunal12588 last updated on 10/Feb/19
b.  from binimial expansion  0^n =(1−1)^n   ⇒0=^n C_0 −^n C_1 +^n C_2 −.....+(−1)^n  ∙^n C_n   ⇒^n C_0 +^n C_2 +^n C_4 +....=^n C_1 +^n C_3 +^n C_5 +....    eq(1)  LHS  of eq(1)  ^n C_0 +^n C_2 +^n C_4 +....  =^(n−1) C_0 +^(n−1) C_1 +^(n−1) C_2 +^(n−1) C_3 +^(n−1) C_4 +...  =2^(n−1)     proved  I used the identities (1) and (3)  from   question 54740 see carefully
$${b}.\:\:{from}\:{binimial}\:{expansion} \\ $$$$\mathrm{0}^{{n}} =\left(\mathrm{1}−\mathrm{1}\right)^{{n}} \\ $$$$\Rightarrow\mathrm{0}=^{{n}} {C}_{\mathrm{0}} −^{{n}} {C}_{\mathrm{1}} +^{{n}} {C}_{\mathrm{2}} −…..+\left(−\mathrm{1}\right)^{{n}} \:\centerdot\:^{{n}} {C}_{{n}} \\ $$$$\Rightarrow^{{n}} {C}_{\mathrm{0}} +^{{n}} {C}_{\mathrm{2}} +^{{n}} {C}_{\mathrm{4}} +….=^{{n}} {C}_{\mathrm{1}} +^{{n}} {C}_{\mathrm{3}} +^{{n}} {C}_{\mathrm{5}} +….\:\:\:\:{eq}\left(\mathrm{1}\right) \\ $$$${LHS}\:\:{of}\:{eq}\left(\mathrm{1}\right) \\ $$$$\:^{{n}} {C}_{\mathrm{0}} +^{{n}} {C}_{\mathrm{2}} +^{{n}} {C}_{\mathrm{4}} +…. \\ $$$$=^{{n}−\mathrm{1}} {C}_{\mathrm{0}} +^{{n}−\mathrm{1}} {C}_{\mathrm{1}} +^{{n}−\mathrm{1}} {C}_{\mathrm{2}} +^{{n}−\mathrm{1}} {C}_{\mathrm{3}} +^{{n}−\mathrm{1}} {C}_{\mathrm{4}} +… \\ $$$$=\mathrm{2}^{{n}−\mathrm{1}} \:\:\:\:{proved} \\ $$$${I}\:{used}\:{the}\:{identities}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{3}\right)\:\:{from}\: \\ $$$${question}\:\mathrm{54740}\:{see}\:{carefully} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *