Menu Close

let-p-x-1-x-2-1-x-4-1-x-2-n-with-n-integr-natural-1-find-a-simple-form-of-p-x-2-find-roots-of-p-x-and-decompose-p-x-inside-C-x-3-calculate-0-1-p-x-dx-4-decompose-the-fraction-F-x




Question Number 54808 by turbo msup by abdo last updated on 11/Feb/19
let p(x)=(1+x^2 )(1+x^4 )...(1+x^2^n  )  with n integr natural  1) find a simple form of p(x)  2) find roots of p(x)and decompose  p(x) inside C[x]  3)calculate ∫_0 ^1  p(x)dx  4) decompose the fraction  F(x)=(1/(p(x))) .
$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)…\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$${with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{roots}\:{of}\:{p}\left({x}\right){and}\:{decompose} \\ $$$${p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{p}\left({x}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{decompose}\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)}\:. \\ $$
Commented by maxmathsup by imad last updated on 13/Feb/19
1) we can use recurrence to prove that  for x≠+^− 1  P(x) =((1−x^2^(n+1)  )/(1−x^2 ))  2) P(z)=0 ⇔ 1−z^2^(n+1)  =0   ⇔ 1−z^q  =0  with m=2^(n+1)   the roots of   z^m =1 are z_k =e^((i2kπ)/m)   with k  ∈ [[0,m−1]] ⇒z_k =e^((i2kπ)/2^(n+1) )   = e^((ikπ)/2^n )   with k ∈[[0,2^(n+1) −1]]  but  but eliminate values of k /z_k ^2 =1 .
$$\left.\mathrm{1}\right)\:{we}\:{can}\:{use}\:{recurrence}\:{to}\:{prove}\:{that}\:\:{for}\:{x}\neq\overset{−} {+}\mathrm{1} \\ $$$${P}\left({x}\right)\:=\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{P}\left({z}\right)=\mathrm{0}\:\Leftrightarrow\:\mathrm{1}−{z}^{\mathrm{2}^{{n}+\mathrm{1}} } =\mathrm{0}\:\:\:\Leftrightarrow\:\mathrm{1}−{z}^{{q}} \:=\mathrm{0}\:\:{with}\:{m}=\mathrm{2}^{{n}+\mathrm{1}} \:\:{the}\:{roots}\:{of}\: \\ $$$${z}^{{m}} =\mathrm{1}\:{are}\:{z}_{{k}} ={e}^{\frac{{i}\mathrm{2}{k}\pi}{{m}}} \:\:{with}\:{k}\:\:\in\:\left[\left[\mathrm{0},{m}−\mathrm{1}\right]\right]\:\Rightarrow{z}_{{k}} ={e}^{\frac{{i}\mathrm{2}{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }} \:\:=\:{e}^{\frac{{ik}\pi}{\mathrm{2}^{{n}} }} \\ $$$${with}\:{k}\:\in\left[\left[\mathrm{0},\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}\right]\right]\:\:{but}\:\:{but}\:{eliminate}\:{values}\:{of}\:{k}\:/{z}_{{k}} ^{\mathrm{2}} =\mathrm{1}\:. \\ $$
Commented by maxmathsup by imad last updated on 13/Feb/19
P(x) =Π_(k=0_(z_k ≠+^(−1) ) ) ^(2^(n+1) −1) (x−z_k )
$${P}\left({x}\right)\:=\prod_{{k}=\mathrm{0}_{{z}_{{k}} \neq\overset{−\mathrm{1}} {+}} } ^{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}} \left({x}−{z}_{{k}} \right) \\ $$
Answered by mr W last updated on 12/Feb/19
1)  p(x)=(1+x^2 )(1+x^4 )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^2 )(1+x^2 )(1+x^4 )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^4 )(1+x^4 )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^8 )...(1+x^2^n  )  ....  (1−x^2 )p(x)=(1−x^2^n  )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^2^(n+1)  )  ⇒p(x)=((1−x^2^(n+1)  )/(1−x^2 ))
$$\left.\mathrm{1}\right) \\ $$$${p}\left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)…\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)…\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{4}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)…\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{8}} \right)…\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$…. \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{2}^{{n}} } \right)…\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } \right) \\ $$$$\Rightarrow{p}\left({x}\right)=\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$
Commented by maxmathsup by imad last updated on 12/Feb/19
correct sir but x≠+^− 1
$${correct}\:{sir}\:{but}\:{x}\neq\overset{−} {+}\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *