Menu Close

Question-120727




Question Number 120727 by 77731 last updated on 02/Nov/20
Answered by TANMAY PANACEA last updated on 02/Nov/20
N_r =2+2cosx−2cosnx−cos(n−1)x−cos(n+1)x  =2+2cosx−2cosnx−2cosnxcosx  =2(1+cosx)−2cosnx(1+cosx)  =2(1+cosx)(1−cosnx)  (N_r /D_r )=((2(1+cosx)(1−cosnx))/(1−cos2x))=((2(1+cosx)(1−cosnx))/(2sin^2 x))  I_n −I_(n−2) =∫_0 ^π (((1+cosx)/(sin^2 x)))({1−cosnx−1+cos(n−2)x} dx  =∫_0 ^π (((1+cosx)/(sin^2 x)))×2sin(n−1)xsinx  =∫_0 ^π ((1+cosx)/(sinx))×sin(n−1)xdx  =∫_0 ^π ((2cos^2 (x/2))/(2sin(x/2)cos(x/2)))×sin(n−1)xdx  =∫_0 ^π cot(x/2)×sin(n−1)xdx  I_n −I_(n−2) =∫_0 ^π cot(x/2)sin(n−1)xdx  wait...
$${N}_{{r}} =\mathrm{2}+\mathrm{2}{cosx}−\mathrm{2}{cosnx}−{cos}\left({n}−\mathrm{1}\right){x}−{cos}\left({n}+\mathrm{1}\right){x} \\ $$$$=\mathrm{2}+\mathrm{2}{cosx}−\mathrm{2}{cosnx}−\mathrm{2}{cosnxcosx} \\ $$$$=\mathrm{2}\left(\mathrm{1}+{cosx}\right)−\mathrm{2}{cosnx}\left(\mathrm{1}+{cosx}\right) \\ $$$$=\mathrm{2}\left(\mathrm{1}+{cosx}\right)\left(\mathrm{1}−{cosnx}\right) \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{\mathrm{2}\left(\mathrm{1}+{cosx}\right)\left(\mathrm{1}−{cosnx}\right)}{\mathrm{1}−{cos}\mathrm{2}{x}}=\frac{\mathrm{2}\left(\mathrm{1}+{cosx}\right)\left(\mathrm{1}−{cosnx}\right)}{\mathrm{2}{sin}^{\mathrm{2}} {x}} \\ $$$${I}_{{n}} −{I}_{{n}−\mathrm{2}} =\int_{\mathrm{0}} ^{\pi} \left(\frac{\mathrm{1}+{cosx}}{{sin}^{\mathrm{2}} {x}}\right)\left(\left\{\mathrm{1}−{cosnx}−\mathrm{1}+{cos}\left({n}−\mathrm{2}\right){x}\right\}\:{dx}\right. \\ $$$$=\int_{\mathrm{0}} ^{\pi} \left(\frac{\mathrm{1}+{cosx}}{{sin}^{\mathrm{2}} {x}}\right)×\mathrm{2}{sin}\left({n}−\mathrm{1}\right){xsinx} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{1}+{cosx}}{{sinx}}×{sin}\left({n}−\mathrm{1}\right){xdx} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{2}{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}}×{sin}\left({n}−\mathrm{1}\right){xdx} \\ $$$$=\int_{\mathrm{0}} ^{\pi} {cot}\frac{{x}}{\mathrm{2}}×{sin}\left({n}−\mathrm{1}\right){xdx} \\ $$$${I}_{{n}} −{I}_{{n}−\mathrm{2}} =\int_{\mathrm{0}} ^{\pi} {cot}\frac{{x}}{\mathrm{2}}{sin}\left({n}−\mathrm{1}\right){xdx} \\ $$$${wait}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *