Menu Close

1-e-x-1-dx-




Question Number 120919 by bounhome last updated on 04/Nov/20
∫(1/((e^x +1)))dx=?
$$\int\frac{\mathrm{1}}{\left({e}^{{x}} +\mathrm{1}\right)}{dx}=? \\ $$
Answered by Dwaipayan Shikari last updated on 04/Nov/20
∫(1/(e^x +1))dx  =∫(dt/(t(t−1)))            t=e^x +1⇒1=e^x (dt/dx)  =log(((t−1)/t))+C  =log((e^x /(e^x +1)))+C
$$\int\frac{\mathrm{1}}{{e}^{{x}} +\mathrm{1}}{dx} \\ $$$$=\int\frac{{dt}}{{t}\left({t}−\mathrm{1}\right)}\:\:\:\:\:\:\:\:\:\:\:\:{t}={e}^{{x}} +\mathrm{1}\Rightarrow\mathrm{1}={e}^{{x}} \frac{{dt}}{{dx}} \\ $$$$={log}\left(\frac{{t}−\mathrm{1}}{{t}}\right)+{C} \\ $$$$={log}\left(\frac{{e}^{{x}} }{{e}^{{x}} +\mathrm{1}}\right)+\mathrm{C} \\ $$
Commented by bounhome last updated on 04/Nov/20
thank you
$${thank}\:{you} \\ $$
Answered by liberty last updated on 04/Nov/20
 ∫ ((e^x  dx)/(e^x (e^x +1))) = ∫ ((d(e^x ))/(e^x (e^x +1))) = ∫ (dr/(r(r+1)))  = ∫ ((1/r)−(1/(r+1)))dr = ln ((r/(r+1)))+C  = ln ((e^x /(e^x +1)))+c .▲
$$\:\int\:\frac{\mathrm{e}^{\mathrm{x}} \:\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} \left(\mathrm{e}^{\mathrm{x}} +\mathrm{1}\right)}\:=\:\int\:\frac{\mathrm{d}\left(\mathrm{e}^{\mathrm{x}} \right)}{\mathrm{e}^{\mathrm{x}} \left(\mathrm{e}^{\mathrm{x}} +\mathrm{1}\right)}\:=\:\int\:\frac{\mathrm{dr}}{\mathrm{r}\left(\mathrm{r}+\mathrm{1}\right)} \\ $$$$=\:\int\:\left(\frac{\mathrm{1}}{\mathrm{r}}−\frac{\mathrm{1}}{\mathrm{r}+\mathrm{1}}\right)\mathrm{dr}\:=\:\mathrm{ln}\:\left(\frac{\mathrm{r}}{\mathrm{r}+\mathrm{1}}\right)+\mathrm{C} \\ $$$$=\:\mathrm{ln}\:\left(\frac{\mathrm{e}^{\mathrm{x}} }{\mathrm{e}^{\mathrm{x}} +\mathrm{1}}\right)+\mathrm{c}\:.\blacktriangle \\ $$
Commented by bounhome last updated on 04/Nov/20
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *