Menu Close

A-metallic-cube-is-subjected-to-heating-such-that-as-the-metal-expands-the-total-surface-area-increases-at-rate-of-6-25-cm-2-s-1-Calculate-the-rate-at-which-each-side-of-the-cube-is-increasing-w




Question Number 186473 by nadovic last updated on 04/Feb/23
A metallic cube is subjected to  heating such that as the metal  expands, the total surface area  increases at rate of 6.25 cm^2 s^(−1) .  Calculate the rate at which each  side of the cube is increasing when  the volume is 51.2 cm^3 .
$$\mathrm{A}\:\mathrm{metallic}\:\mathrm{cube}\:\mathrm{is}\:\mathrm{subjected}\:\mathrm{to} \\ $$$$\mathrm{heating}\:\mathrm{such}\:\mathrm{that}\:\mathrm{as}\:\mathrm{the}\:\mathrm{metal} \\ $$$$\mathrm{expands},\:\mathrm{the}\:\mathrm{total}\:\mathrm{surface}\:\mathrm{area} \\ $$$$\mathrm{increases}\:\mathrm{at}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{6}.\mathrm{25}\:\mathrm{cm}^{\mathrm{2}} \mathrm{s}^{−\mathrm{1}} . \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{at}\:\mathrm{which}\:\mathrm{each} \\ $$$$\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{is}\:\mathrm{increasing}\:\mathrm{when} \\ $$$$\mathrm{the}\:\mathrm{volume}\:\mathrm{is}\:\mathrm{51}.\mathrm{2}\:\mathrm{cm}^{\mathrm{3}} . \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *