Question Number 55454 by maxmathsup by imad last updated on 24/Feb/19
$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:+{a}}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right)\:{intermsof}\:{a} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{2}}{dx} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} \:+{a}\right)^{{n}} }\:{dx}\:\:.{calculate}\:{g}\left({a}\right)\:{interms}\:{of}\:{a} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{values}>\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{5}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{f}\left({n}\right)\:\:{and}\Sigma\:{g}\left({n}\right)\: \\ $$
Commented by maxmathsup by imad last updated on 24/Feb/19
$${g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} \:+{a}\right)^{\mathrm{2}} }{dx}\:. \\ $$
Commented by maxmathsup by imad last updated on 26/Feb/19
$$\left.\mathrm{1}\right)\:{changement}\:{x}\:=\sqrt{{a}}{t}\:{give}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\sqrt{{a}}{t}\right)}{{a}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}\:\sqrt{{a}}{dt}\:=\frac{\mathrm{1}}{\:\sqrt{{a}}}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\sqrt{{a}}\right)+{ln}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\frac{{ln}\left(\sqrt{\left.{a}\right)}\right.}{\:\sqrt{{a}}}\int_{\mathrm{0}} ^{\infty} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\:\sqrt{{a}}}\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:\:{but}\:{chang}.{t}\:=\frac{\mathrm{1}}{{u}}\:{drive}\:{to}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=\mathrm{0}\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\frac{\pi}{\mathrm{2}}\:\frac{{ln}\left(\sqrt{{a}}\right)}{\:\sqrt{{a}}}\:\Rightarrow\:\bigstar{f}\left({a}\right)\:=\frac{\pi}{\mathrm{4}}\:\frac{{ln}\left({a}\right)}{\:\sqrt{{a}}}\:\bigstar \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:={f}\left(\mathrm{1}\right)\:=\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{2}}\:{dx}\:={f}\left(\mathrm{2}\right)\:=\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$$$\left.\mathrm{3}\right){we}\:{have}\:{f}^{'} \left({a}\right)\:=−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} \:+{a}\right)^{\mathrm{2}} }\:{dx}\:=−{g}\left({a}\right)\:\Rightarrow{g}\left({a}\right)=−{f}^{'} \left({a}\right) \\ $$$${but}\:{f}^{'} \left({a}\right)\:=\frac{\pi}{\mathrm{4}}\:\frac{\frac{\sqrt{{a}}}{{a}}−{ln}\left({a}\right)\frac{\mathrm{1}}{\mathrm{2}\sqrt{{a}}}}{{a}}\:=\frac{\pi}{\mathrm{4}}\:\frac{\frac{\mathrm{2}{a}−{aln}\left({a}\right)}{\mathrm{2}{a}\sqrt{{a}}}}{{a}}\:=\frac{\pi}{\mathrm{4}}\:\frac{\mathrm{2}−{lna}}{\mathrm{2}{a}\sqrt{{a}}}\:\Rightarrow \\ $$$$\bigstar{g}\left({a}\right)\:=\frac{\pi\left({ln}\left({a}\right)−\mathrm{2}\right)}{\mathrm{8}{a}\sqrt{{a}}}\bigstar \\ $$$$\left.\mathrm{4}\right)\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx}\:={g}\left(\mathrm{3}\right)=\frac{\pi\left({ln}\mathrm{3}−\mathrm{2}\right)}{\mathrm{24}\sqrt{\mathrm{3}}} \\ $$
Commented by maxmathsup by imad last updated on 26/Feb/19
$$\left.\mathrm{5}\right)\:{we}\:{have}\:\sum_{{n}\geqslant\mathrm{1}} \:{f}\left({n}\right)\:=\frac{\pi}{\mathrm{4}}\sum_{{n}\geqslant\mathrm{1}} \:\:\:\frac{{ln}\left({n}\right)}{\:\sqrt{{n}}} \\ $$$${let}\:\varphi\left({t}\right)=\frac{{ln}\left({t}\right)}{\:\sqrt{{t}}}\:\:\:\Rightarrow\varphi^{'} \left({t}\right)\:=\frac{\frac{\sqrt{{t}}}{{t}}−{ln}\left({t}\right)\frac{\mathrm{1}}{\mathrm{2}\sqrt{{t}}}}{{t}}\:=\frac{\frac{\mathrm{1}}{\:\sqrt{{t}}}−\frac{{ln}\left({t}\right)}{\mathrm{2}\sqrt{{t}}}}{{t}}\:=\frac{\mathrm{2}−{ln}\left({t}\right)}{\mathrm{2}{t}\sqrt{{t}}} \\ $$$${for}\:{t}\geqslant{e}^{\mathrm{2}} \:\Rightarrow{ln}\left({t}\right)\geqslant\mathrm{2}\:\Rightarrow\:\varphi^{'} \left({t}\right)\leqslant\mathrm{0}\:\Rightarrow\:\varphi\:{is}\:{decreasing}\:\:{so}\:\Sigma\:{f}\left({n}\right)\:{and}\: \\ $$$$\int_{{e}^{\mathrm{2}} } ^{+\infty} \:\frac{{ln}\left({x}\right)}{\:\sqrt{{x}}}\:{dx}\:{have}\:{the}\:{same}\:{nature}\: \\ $$$$\int_{{e}^{\mathrm{2}} } ^{+\infty} \:\:\frac{{ln}\left({x}\right)}{\:\sqrt{{x}}}\:{dx}\:=_{{x}={t}^{\mathrm{2}} } \:\:\:\:\:\int_{{e}} ^{+\infty} \:\:\frac{\mathrm{2}{ln}\left({t}\right)}{{t}}\:\left(\mathrm{2}{t}\right){dt}\:=\:\mathrm{4}\int_{{e}} ^{+\infty} {ln}\left({t}\right){dt}\:=+\infty\:\Rightarrow \\ $$$$\Sigma\:{f}\left({n}\right)\:{is}\:{divergent}\:. \\ $$