Menu Close

x-2-y-36-x-y-2-25-x-y-




Question Number 121913 by Jamshidbek2311 last updated on 12/Nov/20
 { ((x^2 +y=36)),((x+y^2 =25  x=? y=?)) :}
$$\begin{cases}{{x}^{\mathrm{2}} +{y}=\mathrm{36}}\\{{x}+{y}^{\mathrm{2}} =\mathrm{25}\:\:{x}=?\:{y}=?}\end{cases} \\ $$
Answered by MJS_new last updated on 12/Nov/20
(1) y=36−x^2   ⇒  (2) x^4 −72x^2 +x+1271=0  and this can only be solved approximately
$$\left(\mathrm{1}\right)\:{y}=\mathrm{36}−{x}^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{2}\right)\:{x}^{\mathrm{4}} −\mathrm{72}{x}^{\mathrm{2}} +{x}+\mathrm{1271}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{this}\:\mathrm{can}\:\mathrm{only}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{approximately} \\ $$
Commented by MJS_new last updated on 12/Nov/20
...of course it is possible to exactly solve any  polynome of degree 4 but in this case you  cannot handle the exact solutions
$$…\mathrm{of}\:\mathrm{course}\:\mathrm{it}\:{is}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{exactly}\:\mathrm{solve}\:\mathrm{any} \\ $$$$\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{4}\:\mathrm{but}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{you} \\ $$$$\mathrm{cannot}\:\mathrm{handle}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{solutions} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *