Menu Close

There-are-28-players-in-a-national-football-team-14-play-midfield-and-defence-15-play-defence-and-attack-and-3-play-midfield-only-the-number-of-players-who-play-attack-only-is-twice-those-who-pl




Question Number 57023 by otchereabdullai@gmail.com last updated on 28/Mar/19
There are 28 players in a national   football team. 14 play midfield and  defence, 15 play defence and attack   and 3 play midfield only. the number  of players who play attack only is   twice those who play defence only, and  the number who play defence   is equal to those who play attack. If   18 play midfield represent the   information on a venn diagram.  Find  i. how many play at most two games  ii. how many play neither attack nor  defence  iii. how many play either midfield or   attack.
$$\mathrm{There}\:\mathrm{are}\:\mathrm{28}\:\mathrm{players}\:\mathrm{in}\:\mathrm{a}\:\mathrm{national}\: \\ $$$$\mathrm{football}\:\mathrm{team}.\:\mathrm{14}\:\mathrm{play}\:\mathrm{midfield}\:\mathrm{and} \\ $$$$\mathrm{defence},\:\mathrm{15}\:\mathrm{play}\:\mathrm{defence}\:\mathrm{and}\:\mathrm{attack}\: \\ $$$$\mathrm{and}\:\mathrm{3}\:\mathrm{play}\:\mathrm{midfield}\:\mathrm{only}.\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{players}\:\mathrm{who}\:\mathrm{play}\:\mathrm{attack}\:\mathrm{only}\:\mathrm{is}\: \\ $$$$\mathrm{twice}\:\mathrm{those}\:\mathrm{who}\:\mathrm{play}\:\mathrm{defence}\:\mathrm{only},\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{who}\:\mathrm{play}\:\mathrm{defence} \\ $$$$\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{those}\:\mathrm{who}\:\mathrm{play}\:\mathrm{attack}.\:\mathrm{If}\: \\ $$$$\mathrm{18}\:\mathrm{play}\:\mathrm{midfield}\:\mathrm{represent}\:\mathrm{the}\: \\ $$$$\mathrm{information}\:\mathrm{on}\:\mathrm{a}\:\mathrm{venn}\:\mathrm{diagram}. \\ $$$$\mathrm{Find} \\ $$$$\mathrm{i}.\:\mathrm{how}\:\mathrm{many}\:\mathrm{play}\:\mathrm{at}\:\mathrm{most}\:\mathrm{two}\:\mathrm{games} \\ $$$$\mathrm{ii}.\:\mathrm{how}\:\mathrm{many}\:\mathrm{play}\:\mathrm{neither}\:\mathrm{attack}\:\mathrm{nor} \\ $$$$\mathrm{defence} \\ $$$$\mathrm{iii}.\:\mathrm{how}\:\mathrm{many}\:\mathrm{play}\:\mathrm{either}\:\mathrm{midfield}\:\mathrm{or}\: \\ $$$$\mathrm{attack}. \\ $$
Answered by MJS last updated on 29/Mar/19
the venn diagram has got 7 areas    (1)  m+a+d+ma+md+ad+mad=28  (2)  md+mad=14 ⇒ md=14−mad  (3)  ad+mad=15 ⇒ ad=15−mad  (4)  m=3  (5)  a=2d  (6)  d+md+ad+mad=a+ma+ad+mad ⇒       ⇒ d+md=a+ma  (7)  m+ma+md+mad=18      (1)  3+2d+d+ma+14−mad+15−mad+mad=28 ⇒       ⇒ 3d+ma−mad=−4  (6)  d+14−mad=2d+ma ⇒       ⇒ d+ma+mad=14  (7)  3+ma+14−mad+mad=18 ⇒ ma=1      (1)  3d−mad=−5  (6)  d+mad=13       ⇒ d=2; mad=11    m=3  a=4  d=2  ma=1  md=3  ad=4  mad=11    i. 28−mad=17  ii. m=3  iii. m+a+md+ad=14
$$\mathrm{the}\:\mathrm{venn}\:\mathrm{diagram}\:\mathrm{has}\:\mathrm{got}\:\mathrm{7}\:\mathrm{areas} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\:{m}+{a}+{d}+{ma}+{md}+{ad}+{mad}=\mathrm{28} \\ $$$$\left(\mathrm{2}\right)\:\:{md}+{mad}=\mathrm{14}\:\Rightarrow\:{md}=\mathrm{14}−{mad} \\ $$$$\left(\mathrm{3}\right)\:\:{ad}+{mad}=\mathrm{15}\:\Rightarrow\:{ad}=\mathrm{15}−{mad} \\ $$$$\left(\mathrm{4}\right)\:\:{m}=\mathrm{3} \\ $$$$\left(\mathrm{5}\right)\:\:{a}=\mathrm{2}{d} \\ $$$$\left(\mathrm{6}\right)\:\:{d}+{md}+{ad}+{mad}={a}+{ma}+{ad}+{mad}\:\Rightarrow \\ $$$$\:\:\:\:\:\Rightarrow\:{d}+{md}={a}+{ma} \\ $$$$\left(\mathrm{7}\right)\:\:{m}+{ma}+{md}+{mad}=\mathrm{18} \\ $$$$ \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\:\mathrm{3}+\mathrm{2}{d}+{d}+{ma}+\mathrm{14}−{mad}+\mathrm{15}−{mad}+{mad}=\mathrm{28}\:\Rightarrow \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{3}{d}+{ma}−{mad}=−\mathrm{4} \\ $$$$\left(\mathrm{6}\right)\:\:{d}+\mathrm{14}−{mad}=\mathrm{2}{d}+{ma}\:\Rightarrow \\ $$$$\:\:\:\:\:\Rightarrow\:{d}+{ma}+{mad}=\mathrm{14} \\ $$$$\left(\mathrm{7}\right)\:\:\mathrm{3}+{ma}+\mathrm{14}−{mad}+{mad}=\mathrm{18}\:\Rightarrow\:{ma}=\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\:\mathrm{3}{d}−{mad}=−\mathrm{5} \\ $$$$\left(\mathrm{6}\right)\:\:{d}+{mad}=\mathrm{13} \\ $$$$\:\:\:\:\:\Rightarrow\:{d}=\mathrm{2};\:{mad}=\mathrm{11} \\ $$$$ \\ $$$${m}=\mathrm{3} \\ $$$${a}=\mathrm{4} \\ $$$${d}=\mathrm{2} \\ $$$${ma}=\mathrm{1} \\ $$$${md}=\mathrm{3} \\ $$$${ad}=\mathrm{4} \\ $$$${mad}=\mathrm{11} \\ $$$$ \\ $$$$\mathrm{i}.\:\mathrm{28}−{mad}=\mathrm{17} \\ $$$$\mathrm{ii}.\:{m}=\mathrm{3} \\ $$$$\mathrm{iii}.\:{m}+{a}+{md}+{ad}=\mathrm{14} \\ $$
Commented by otchereabdullai@gmail.com last updated on 29/Mar/19
thanks prof
$$\mathrm{thanks}\:\mathrm{prof} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *