Menu Close

Question-122605




Question Number 122605 by bramlexs22 last updated on 18/Nov/20
Answered by Dwaipayan Shikari last updated on 18/Nov/20
T_n =(2/(n(n+1)))  S_n +1=Σ^n (2/(n(n+1)))  S_n +1=(2/(n+1))⇒S_n =((2n)/(n+1))−1⇒S_(10) =((20)/(11))−1=(9/(11))
$${T}_{{n}} =\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)} \\ $$$${S}_{{n}} +\mathrm{1}=\overset{{n}} {\sum}\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)} \\ $$$${S}_{{n}} +\mathrm{1}=\frac{\mathrm{2}}{{n}+\mathrm{1}}\Rightarrow{S}_{{n}} =\frac{\mathrm{2}{n}}{{n}+\mathrm{1}}−\mathrm{1}\Rightarrow{S}_{\mathrm{10}} =\frac{\mathrm{20}}{\mathrm{11}}−\mathrm{1}=\frac{\mathrm{9}}{\mathrm{11}} \\ $$$$ \\ $$
Answered by MJS_new last updated on 18/Nov/20
S_n =Σ_(k=2) ^n  (1/(Σ_(j=1) ^k  j)) =Σ_(k=2) ^n  (2/(k(k+1))) =((n−1)/(n+1))  S_(10) =(9/(11))
$${S}_{{n}} =\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\underset{{j}=\mathrm{1}} {\overset{{k}} {\sum}}\:{j}}\:=\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\:\frac{\mathrm{2}}{{k}\left({k}+\mathrm{1}\right)}\:=\frac{{n}−\mathrm{1}}{{n}+\mathrm{1}} \\ $$$${S}_{\mathrm{10}} =\frac{\mathrm{9}}{\mathrm{11}} \\ $$
Commented by bramlexs22 last updated on 18/Nov/20
telescoping series sir?
$${telescoping}\:{series}\:{sir}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *