Menu Close

Question-122867




Question Number 122867 by bemath last updated on 20/Nov/20
Answered by som(math1967) last updated on 20/Nov/20
I=∫_0 ^(π/2) (((√(cosx))dx)/( (√(cosx))+(√(sinx))))  again I=∫_0 ^(π/2) (((√(cos((π/2)−x)))dx)/( (√(cos((π/2)−x)))+(√(sin((π/2)−x)))))  =∫_0 ^(π/2) (((√(sinx))dx)/( (√(sinx))+(√(cosx))))  ∴2I=∫_0 ^(π/2) (((√(sinx))+(√(cosx)))/( (√(sinx))+(√(cosx))))dx  2I=∫_0 ^(π/2) dx=(π/2)−0  ∴I=(π/4) ans
$$\mathrm{I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{cosx}}\mathrm{dx}}{\:\sqrt{\mathrm{cosx}}+\sqrt{\mathrm{sinx}}} \\ $$$$\mathrm{again}\:\mathrm{I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}−\mathrm{x}\right)}\mathrm{dx}}{\:\sqrt{\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}−\mathrm{x}\right)}+\sqrt{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}−\mathrm{x}\right)}} \\ $$$$=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{sinx}}\mathrm{dx}}{\:\sqrt{\mathrm{sinx}}+\sqrt{\mathrm{cosx}}} \\ $$$$\therefore\mathrm{2I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{sinx}}+\sqrt{\mathrm{cosx}}}{\:\sqrt{\mathrm{sinx}}+\sqrt{\mathrm{cosx}}}\mathrm{dx} \\ $$$$\mathrm{2I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{dx}=\frac{\pi}{\mathrm{2}}−\mathrm{0} \\ $$$$\therefore\mathrm{I}=\frac{\pi}{\mathrm{4}}\:\mathrm{ans} \\ $$
Answered by liberty last updated on 20/Nov/20
φ =∫_0 ^(π/2) (1/(1+(√(tan x)))) dx   using the interval inversion substitution  that replaces x with (π/2)−x , we get   φ =∫_0 ^(π/2)  (1/(1+(√(cot x)))) dx = ∫_0 ^(π/2) ((√(tan x))/( (√(tan x)) +1)) dx  adding together of φ(x) yields  2φ =∫_0 ^(π/2) (1/(1+(√(tan x)))) dx + ∫_0 ^(π/2) ((√(tan x))/(1+(√(tan x)))) dx  2φ = ∫_0 ^(π/2)  dx = x ] _0^(π/2)   φ = (π/4).
$$\phi\:=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}}\:{dx}\: \\ $$$${using}\:{the}\:{interval}\:{inversion}\:{substitution} \\ $$$${that}\:{replaces}\:{x}\:{with}\:\frac{\pi}{\mathrm{2}}−{x}\:,\:{we}\:{get}\: \\ $$$$\phi\:=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{cot}\:{x}}}\:{dx}\:=\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\sqrt{\mathrm{tan}\:{x}}}{\:\sqrt{\mathrm{tan}\:{x}}\:+\mathrm{1}}\:{dx} \\ $$$${adding}\:{together}\:{of}\:\phi\left({x}\right)\:{yields} \\ $$$$\mathrm{2}\phi\:=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}}\:{dx}\:+\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}}\:{dx} \\ $$$$\left.\mathrm{2}\phi\:=\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:{dx}\:=\:{x}\:\right]\:_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\phi\:=\:\frac{\pi}{\mathrm{4}}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *