Question Number 71216 by TawaTawa last updated on 13/Oct/19
Answered by mind is power last updated on 13/Oct/19
$$\Sigma\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{x}}{\mathrm{n}!}=\Sigma\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}!}+\mathrm{x}\Sigma\frac{\mathrm{1}}{\mathrm{n}!} \\ $$$$\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}!}=\mathrm{1}+\sum_{\mathrm{n}\geqslant\mathrm{2}} \frac{\mathrm{n}}{\left(\mathrm{n}−\mathrm{1}\right)!}=\Sigma\frac{\mathrm{n}−\mathrm{1}+\mathrm{1}}{\left(\mathrm{n}−\mathrm{1}\right)!}=\Sigma\frac{\mathrm{1}}{\left(\mathrm{n}−\mathrm{2}\right)!}+\Sigma\frac{\mathrm{1}}{\left(\mathrm{n}−\mathrm{1}\right)!} \\ $$$$=\mathrm{e}+\mathrm{e}−\mathrm{1} \\ $$$$\Rightarrow\Sigma\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}!}=\mathrm{1}+\mathrm{2e}−\mathrm{1}=\mathrm{2e} \\ $$$$\Sigma\frac{\mathrm{x}}{\mathrm{n}!}=\mathrm{xe} \\ $$$$\Rightarrow\mathrm{2e}+\mathrm{xe}=\mathrm{ex}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{2}=\mathrm{0} \\ $$$$\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{x}\in\left\{\mathrm{2},−\mathrm{1}\right\} \\ $$$$ \\ $$
Commented by TawaTawa last updated on 13/Oct/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$