Menu Close

find-the-maximum-and-minimum-values-of-2cos2x-cos4x-in-the-range-0-lt-x-lt-pi-sketch-the-curve-




Question Number 123337 by aurpeyz last updated on 25/Nov/20
find the maximum and minimum  values of 2cos2x−cos4x in the range  0<x<π. sketch the curve
$${find}\:{the}\:{maximum}\:{and}\:{minimum} \\ $$$${values}\:{of}\:\mathrm{2}{cos}\mathrm{2}{x}−{cos}\mathrm{4}{x}\:{in}\:{the}\:{range} \\ $$$$\mathrm{0}<{x}<\pi.\:{sketch}\:{the}\:{curve} \\ $$
Commented by bemath last updated on 25/Nov/20
max = 1.5 ; min = −3   range ⇒ −3≤y≤1.5
$${max}\:=\:\mathrm{1}.\mathrm{5}\:;\:{min}\:=\:−\mathrm{3}\: \\ $$$${range}\:\Rightarrow\:−\mathrm{3}\leqslant{y}\leqslant\mathrm{1}.\mathrm{5} \\ $$
Commented by bemath last updated on 25/Nov/20
Commented by aurpeyz last updated on 25/Nov/20
thanks
$${thanks} \\ $$
Commented by aurpeyz last updated on 25/Nov/20
pls explain how you got min=−3.   i tried so hard but couldnt
$${pls}\:{explain}\:{how}\:{you}\:{got}\:{min}=−\mathrm{3}.\: \\ $$$${i}\:{tried}\:{so}\:{hard}\:{but}\:{couldnt} \\ $$
Commented by bemath last updated on 25/Nov/20
let ∅(x)=2cos 2x−cos 4x   ∅(x)=2cos 2x−(2cos^2 2x−1)  ∅(x)=−2cos^2 2x+2cos 2x+1  ∅(x) = −2(cos^2 2x−cos 2x)+1  ∅(x)=−2[(cos 2x−(1/2))^2 −(1/4)]+1  ∅(x)=−2(cos 2x−(1/2))^2 +(3/2)  → { ((max when cos 2x=(1/2))),((min when cos 2x=−1)) :}
$${let}\:\emptyset\left({x}\right)=\mathrm{2cos}\:\mathrm{2}{x}−\mathrm{cos}\:\mathrm{4}{x}\: \\ $$$$\emptyset\left({x}\right)=\mathrm{2cos}\:\mathrm{2}{x}−\left(\mathrm{2cos}\:^{\mathrm{2}} \mathrm{2}{x}−\mathrm{1}\right) \\ $$$$\emptyset\left({x}\right)=−\mathrm{2cos}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{2cos}\:\mathrm{2}{x}+\mathrm{1} \\ $$$$\emptyset\left({x}\right)\:=\:−\mathrm{2}\left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{2}{x}−\mathrm{cos}\:\mathrm{2}{x}\right)+\mathrm{1} \\ $$$$\emptyset\left({x}\right)=−\mathrm{2}\left[\left(\mathrm{cos}\:\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\right]+\mathrm{1} \\ $$$$\emptyset\left({x}\right)=−\mathrm{2}\left(\mathrm{cos}\:\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\rightarrow\begin{cases}{{max}\:{when}\:\mathrm{cos}\:\mathrm{2}{x}=\frac{\mathrm{1}}{\mathrm{2}}}\\{{min}\:{when}\:\mathrm{cos}\:\mathrm{2}{x}=−\mathrm{1}}\end{cases} \\ $$
Commented by MJS_new last updated on 25/Nov/20
cos 2x =−1+2cos^2  x  cos 4x =−1+2cos^2  2x =       =−1+2(−1+2cos^2  x)^2 =       =1−8cos^2  x +8cos^4  x  ⇒2cos 2x −cos 4x =       =−3+12cos^2  x −8cos^4  x =f(x)  we can always use  t=tan (x/2) ⇔ x=2arctan t  ⇒ sin x =((2t)/(t^2 +1))∧cos x =−((t^2 −1)/(t^2 +1))  ⇒ −3+12cos^2  x −8cos^4  x =  =((t^8 +20t^6 −90t^4 +20t^2 +1)/((t^2 +1)^4 ))=g(t)  (dg/dt)=0  −32((t(t^6 −15t^4 +15t^2 −1))/((t^2 +1)^5 ))=0  t(t^6 −15t^4 +15t^2 −1)=0  t_1 =0  t^6 −15t^4 +15t^2 −1=0  trying factors of −1 ⇒ t_(2, 3) =±1  t^4 −14t^2 +1=0  ⇒ t^2 =7±4(√3)  ⇒ t=±(√(7±4(√3)))=±(2±(√3))  now we have  t∈{−2−(√3), −1, −2+(√3), 0, 2−(√3), 1, 2+(√3)}  now t=tan (x/2) ⇒ x=2nπ+2arctan t  for 0<x<π we get  (x=0∨x=π ⇒ f(x)=1)  x=(π/6) ⇒ f(x)=(3/2)  x=(π/2) ⇒ f(x)=−3  x=((5π)/6) ⇒ f(x)=(3/2)  ⇒ minimum is −3 and maximum is (3/2)
$$\mathrm{cos}\:\mathrm{2}{x}\:=−\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \:{x} \\ $$$$\mathrm{cos}\:\mathrm{4}{x}\:=−\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \:\mathrm{2}{x}\:= \\ $$$$\:\:\:\:\:=−\mathrm{1}+\mathrm{2}\left(−\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \:{x}\right)^{\mathrm{2}} = \\ $$$$\:\:\:\:\:=\mathrm{1}−\mathrm{8cos}^{\mathrm{2}} \:{x}\:+\mathrm{8cos}^{\mathrm{4}} \:{x} \\ $$$$\Rightarrow\mathrm{2cos}\:\mathrm{2}{x}\:−\mathrm{cos}\:\mathrm{4}{x}\:= \\ $$$$\:\:\:\:\:=−\mathrm{3}+\mathrm{12cos}^{\mathrm{2}} \:{x}\:−\mathrm{8cos}^{\mathrm{4}} \:{x}\:={f}\left({x}\right) \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{always}\:\mathrm{use} \\ $$$${t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\Leftrightarrow\:{x}=\mathrm{2arctan}\:{t} \\ $$$$\Rightarrow\:\mathrm{sin}\:{x}\:=\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\wedge\mathrm{cos}\:{x}\:=−\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow\:−\mathrm{3}+\mathrm{12cos}^{\mathrm{2}} \:{x}\:−\mathrm{8cos}^{\mathrm{4}} \:{x}\:= \\ $$$$=\frac{{t}^{\mathrm{8}} +\mathrm{20}{t}^{\mathrm{6}} −\mathrm{90}{t}^{\mathrm{4}} +\mathrm{20}{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} }={g}\left({t}\right) \\ $$$$\frac{{dg}}{{dt}}=\mathrm{0} \\ $$$$−\mathrm{32}\frac{{t}\left({t}^{\mathrm{6}} −\mathrm{15}{t}^{\mathrm{4}} +\mathrm{15}{t}^{\mathrm{2}} −\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{5}} }=\mathrm{0} \\ $$$${t}\left({t}^{\mathrm{6}} −\mathrm{15}{t}^{\mathrm{4}} +\mathrm{15}{t}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$${t}_{\mathrm{1}} =\mathrm{0} \\ $$$${t}^{\mathrm{6}} −\mathrm{15}{t}^{\mathrm{4}} +\mathrm{15}{t}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{trying}\:\mathrm{factors}\:\mathrm{of}\:−\mathrm{1}\:\Rightarrow\:{t}_{\mathrm{2},\:\mathrm{3}} =\pm\mathrm{1} \\ $$$${t}^{\mathrm{4}} −\mathrm{14}{t}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:{t}^{\mathrm{2}} =\mathrm{7}\pm\mathrm{4}\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\:{t}=\pm\sqrt{\mathrm{7}\pm\mathrm{4}\sqrt{\mathrm{3}}}=\pm\left(\mathrm{2}\pm\sqrt{\mathrm{3}}\right) \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have} \\ $$$${t}\in\left\{−\mathrm{2}−\sqrt{\mathrm{3}},\:−\mathrm{1},\:−\mathrm{2}+\sqrt{\mathrm{3}},\:\mathrm{0},\:\mathrm{2}−\sqrt{\mathrm{3}},\:\mathrm{1},\:\mathrm{2}+\sqrt{\mathrm{3}}\right\} \\ $$$$\mathrm{now}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\Rightarrow\:{x}=\mathrm{2}{n}\pi+\mathrm{2arctan}\:{t} \\ $$$$\mathrm{for}\:\mathrm{0}<{x}<\pi\:\mathrm{we}\:\mathrm{get} \\ $$$$\left({x}=\mathrm{0}\vee{x}=\pi\:\Rightarrow\:{f}\left({x}\right)=\mathrm{1}\right) \\ $$$${x}=\frac{\pi}{\mathrm{6}}\:\Rightarrow\:{f}\left({x}\right)=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${x}=\frac{\pi}{\mathrm{2}}\:\Rightarrow\:{f}\left({x}\right)=−\mathrm{3} \\ $$$${x}=\frac{\mathrm{5}\pi}{\mathrm{6}}\:\Rightarrow\:{f}\left({x}\right)=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{minimum}\:\mathrm{is}\:−\mathrm{3}\:\mathrm{and}\:\mathrm{maximum}\:\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *