Menu Close

proof-or-given-a-counter-example-if-p-is-prime-and-a-N-then-p-a-p-p-a-p-




Question Number 469 by 123456 last updated on 25/Jan/15
proof or given a counter−example  if p is prime and a∈N then  p∣(a+p)^p −a^p
$${proof}\:{or}\:{given}\:{a}\:{counter}−{example} \\ $$$${if}\:{p}\:{is}\:{prime}\:{and}\:{a}\in\mathbb{N}\:{then} \\ $$$${p}\mid\left({a}+{p}\right)^{{p}} −{a}^{{p}} \\ $$
Answered by prakash jain last updated on 10/Jan/15
(a+p)^p =Σ_(i=0) ^p ^p C_i a^i p^(p−i)   (a+p)^p −a^p =Σ_(i=0) ^(p−1) ^p C_i a^i p^(p−i)   All terms on the expansion in RHS  include p as a factor.  Hence p∣(a+p)^p −a^p
$$\left({a}+{p}\right)^{{p}} =\underset{{i}=\mathrm{0}} {\overset{{p}} {\sum}}\:^{{p}} {C}_{{i}} {a}^{{i}} {p}^{{p}−{i}} \\ $$$$\left({a}+{p}\right)^{{p}} −{a}^{{p}} =\underset{{i}=\mathrm{0}} {\overset{{p}−\mathrm{1}} {\sum}}\:^{{p}} {C}_{{i}} {a}^{{i}} {p}^{{p}−{i}} \\ $$$$\mathrm{All}\:\mathrm{terms}\:\mathrm{on}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{in}\:\mathrm{RHS} \\ $$$$\mathrm{include}\:{p}\:\mathrm{as}\:\mathrm{a}\:\mathrm{factor}. \\ $$$$\mathrm{Hence}\:{p}\mid\left({a}+{p}\right)^{{p}} −{a}^{{p}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *