Question Number 189436 by 073 last updated on 16/Mar/23
Commented by 073 last updated on 16/Mar/23
$$\mathrm{solution}\:\mathrm{please} \\ $$
Answered by cortano12 last updated on 16/Mar/23
$$\:\mathrm{let}\:\begin{cases}{\mathrm{B}\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{0}\right)}\\{\mathrm{A}\left(\mathrm{x}_{\mathrm{2}} ,\mathrm{0}\right)}\end{cases};\:\mathrm{x}_{\mathrm{1}} >\mathrm{0}\:,\:\mathrm{x}_{\mathrm{2}} <\mathrm{0} \\ $$$$\Rightarrow\mid\mathrm{B}−\mathrm{A}\mid=\:\mathrm{x}_{\mathrm{1}} −\mathrm{x}_{\mathrm{2}} =\:\mathrm{6}\: \\ $$$$\:\mathrm{and}\:\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} =\mathrm{4}\:\mathrm{then}\:\begin{cases}{\mathrm{x}_{\mathrm{1}} =\mathrm{5}}\\{\mathrm{x}_{\mathrm{2}} =−\mathrm{1}}\end{cases} \\ $$$$\mathrm{so}\:\therefore\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{a}\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{k}\:;\:\left(\mathrm{0},−\mathrm{5}\right),\left(\mathrm{5},\mathrm{0}\right) \\ $$$$\Rightarrow\begin{cases}{−\mathrm{5}=\mathrm{4a}+\mathrm{k}}\\{\:\:\:\:\mathrm{0}=\mathrm{9a}+\mathrm{k}}\end{cases}\:\Rightarrow\begin{cases}{\mathrm{a}=\mathrm{1}}\\{\mathrm{k}=−\mathrm{9}}\end{cases} \\ $$
Commented by 073 last updated on 16/Mar/23
$$\mathrm{nice}\:\mathrm{solution} \\ $$