Menu Close

a-b-c-R-a-b-c-5-Prove-that-a-2-b-2-2b-1-b-2-c-2-2c-1-c-2-a-2-2a-1-29-




Question Number 59131 by naka3546 last updated on 05/May/19
a, b, c  ∈  R  a + b + c  =  5  Prove  that  (√(a^2  + b^2  − 2b + 1))  +  (√(b^2  + c^2  − 2c + 1))  +  (√(c^2  + a^2  − 2a + 1))   ≥  (√(29))
$${a},\:{b},\:{c}\:\:\in\:\:\mathbb{R} \\ $$$${a}\:+\:{b}\:+\:{c}\:\:=\:\:\mathrm{5} \\ $$$${Prove}\:\:{that} \\ $$$$\sqrt{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:−\:\mathrm{2}{b}\:+\:\mathrm{1}}\:\:+\:\:\sqrt{{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:−\:\mathrm{2}{c}\:+\:\mathrm{1}}\:\:+\:\:\sqrt{{c}^{\mathrm{2}} \:+\:{a}^{\mathrm{2}} \:−\:\mathrm{2}{a}\:+\:\mathrm{1}}\:\:\:\geqslant\:\:\sqrt{\mathrm{29}} \\ $$
Answered by Senior Sun last updated on 06/May/19
By Minkoski  Σ_(cyc) (√(a^2 +(b−1)^2 ))≥(√((Σ_(cyc) a)^2 +(Σ_(cyc) b−3)^2 ))                                 ≥(√(5^2 +(5−3)^2 ))                                 ≥(√(29))  there is no equality, so the givten inequality  is >(√(29))
$${By}\:{Minkoski} \\ $$$$\underset{{cyc}} {\sum}\sqrt{{a}^{\mathrm{2}} +\left({b}−\mathrm{1}\right)^{\mathrm{2}} }\geqslant\sqrt{\left(\underset{{cyc}} {\sum}{a}\right)^{\mathrm{2}} +\left(\underset{{cyc}} {\sum}{b}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\geqslant\sqrt{\mathrm{5}^{\mathrm{2}} +\left(\mathrm{5}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\geqslant\sqrt{\mathrm{29}} \\ $$$${there}\:{is}\:{no}\:{equality},\:{so}\:{the}\:{givten}\:{inequality} \\ $$$${is}\:>\sqrt{\mathrm{29}} \\ $$
Answered by tanmay last updated on 05/May/19
(√(a^2 +(b−1)^2 )) +(√(b^2 +(c−1)^2  )) +(√(c^2 +(a−1)^2 ))   ((a^2 +(b−1)^2 )/2)≥[a^2 ×(b−1)^2 ]^(1/2)   (√(a^2 +(b−1)^2 )) ≥(√(2(a)(b−1)))   given exptession≥(√2) [(√(a(b−1))) +(√(b(c−1))) +(√(c(a−1))) ]  (√2)×((a+b−1)/2)≥[a(b−1)]^(1/2) ×(√2)  (√2)×((b+c−1)/2)≥[b(c−1)]^(1/2) ×(√2)  (√2)×((c+a−1)/2)≥[c(a−1)]^(1/2) ×(√2)  (√2)×[((2(a+b+c)−3)/2)]≥(√2) [(√(a(b−1)+b(c−1)+c(a−1)))   (√2) ×(7/2)≥D.E  [D.E=derived expression]
$$\sqrt{{a}^{\mathrm{2}} +\left({b}−\mathrm{1}\right)^{\mathrm{2}} }\:+\sqrt{{b}^{\mathrm{2}} +\left({c}−\mathrm{1}\right)^{\mathrm{2}} \:}\:+\sqrt{{c}^{\mathrm{2}} +\left({a}−\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$$$\frac{{a}^{\mathrm{2}} +\left({b}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}}\geqslant\left[{a}^{\mathrm{2}} ×\left({b}−\mathrm{1}\right)^{\mathrm{2}} \right]^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\sqrt{{a}^{\mathrm{2}} +\left({b}−\mathrm{1}\right)^{\mathrm{2}} }\:\geqslant\sqrt{\mathrm{2}\left({a}\right)\left({b}−\mathrm{1}\right)}\: \\ $$$${given}\:{exptession}\geqslant\sqrt{\mathrm{2}}\:\left[\sqrt{{a}\left({b}−\mathrm{1}\right)}\:+\sqrt{{b}\left({c}−\mathrm{1}\right)}\:+\sqrt{{c}\left({a}−\mathrm{1}\right)}\:\right] \\ $$$$\sqrt{\mathrm{2}}×\frac{{a}+{b}−\mathrm{1}}{\mathrm{2}}\geqslant\left[{a}\left({b}−\mathrm{1}\right)\right]^{\frac{\mathrm{1}}{\mathrm{2}}} ×\sqrt{\mathrm{2}} \\ $$$$\sqrt{\mathrm{2}}×\frac{{b}+{c}−\mathrm{1}}{\mathrm{2}}\geqslant\left[{b}\left({c}−\mathrm{1}\right)\right]^{\frac{\mathrm{1}}{\mathrm{2}}} ×\sqrt{\mathrm{2}} \\ $$$$\sqrt{\mathrm{2}}×\frac{{c}+{a}−\mathrm{1}}{\mathrm{2}}\geqslant\left[{c}\left({a}−\mathrm{1}\right)\right]^{\frac{\mathrm{1}}{\mathrm{2}}} ×\sqrt{\mathrm{2}} \\ $$$$\sqrt{\mathrm{2}}×\left[\frac{\mathrm{2}\left({a}+{b}+{c}\right)−\mathrm{3}}{\mathrm{2}}\right]\geqslant\sqrt{\mathrm{2}}\:\left[\sqrt{{a}\left({b}−\mathrm{1}\right)+{b}\left({c}−\mathrm{1}\right)+{c}\left({a}−\mathrm{1}\right)}\:\right. \\ $$$$\sqrt{\mathrm{2}}\:×\frac{\mathrm{7}}{\mathrm{2}}\geqslant{D}.{E}\:\:\left[{D}.{E}={derived}\:{expression}\right] \\ $$$$ \\ $$
Commented by tanmay last updated on 05/May/19
to be continued...
$${to}\:{be}\:{continued}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *