Menu Close

lim-x-e-x-x-60-pleas-solve-this-




Question Number 190679 by mathlove last updated on 09/Apr/23
lim_(x→∞) (e^x /x^(60!) )=?  pleas solve this
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{e}^{{x}} }{{x}^{\mathrm{60}!} }=? \\ $$$${pleas}\:{solve}\:{this} \\ $$
Answered by Frix last updated on 09/Apr/23
(e^x /x^n ) =e^(x−nln x)   Obviously for n∈N and x→+∞ the term  x−nln x →+∞ ⇒  Answer is +∞
$$\frac{\mathrm{e}^{{x}} }{{x}^{{n}} }\:=\mathrm{e}^{{x}−{n}\mathrm{ln}\:{x}} \\ $$$$\mathrm{Obviously}\:\mathrm{for}\:{n}\in\mathbb{N}\:\mathrm{and}\:{x}\rightarrow+\infty\:\mathrm{the}\:\mathrm{term} \\ $$$${x}−{n}\mathrm{ln}\:{x}\:\rightarrow+\infty\:\Rightarrow \\ $$$$\mathrm{Answer}\:\mathrm{is}\:+\infty \\ $$
Answered by aba last updated on 09/Apr/23
lim_(x→∞) (e^x /x^(60!) )=lim_(x→∞) e^(x−60!ln(x)) =lim_(x→∞) e^(x(1−60!((ln(x))/x))) = { ((0 if x→−∞)),((+∞ if x→+∞)) :}
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} }{\mathrm{x}^{\mathrm{60}!} }=\underset{{x}\rightarrow\infty} {\mathrm{lim}e}^{\mathrm{x}−\mathrm{60}!\mathrm{ln}\left(\mathrm{x}\right)} =\underset{{x}\rightarrow\infty} {\mathrm{lim}e}^{\mathrm{x}\left(\mathrm{1}−\mathrm{60}!\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}}\right)} =\begin{cases}{\mathrm{0}\:\mathrm{if}\:\mathrm{x}\rightarrow−\infty}\\{+\infty\:\mathrm{if}\:\mathrm{x}\rightarrow+\infty}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *