Question Number 125288 by Mathgreat last updated on 09/Dec/20
Commented by Mathgreat last updated on 09/Dec/20
$$\boldsymbol{{Prove}} \\ $$
Commented by mr W last updated on 09/Dec/20
$${you}\:{can}\:{not}\:{prove},\:{because}\:{it}'{s}\:{not} \\ $$$${true}. \\ $$$${just}\:{put}\:\beta=\mathrm{0},\:{you}\:{will}\:{get} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\alpha=\mathrm{1} \\ $$$${but}\:{this}\:{is}\:{not}\:{true}. \\ $$
Answered by mathmax by abdo last updated on 10/Dec/20
$$\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{y}\right)+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}−\mathrm{y}\right)−\mathrm{cos}^{\mathrm{2}} \mathrm{x}.\mathrm{cos}^{\mathrm{2}} \mathrm{y} \\ $$$$=\left(\mathrm{cosx}\:\mathrm{cosy}−\mathrm{sinxsiny}\right)^{\mathrm{2}} \:+\left(\mathrm{cosxcosy}+\mathrm{sinx}\:\mathrm{siny}\right)^{\mathrm{2}} −\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:\mathrm{cos}^{\mathrm{2}} \mathrm{y} \\ $$$$=\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:\mathrm{cos}^{\mathrm{2}} \mathrm{y}−\mathrm{2cosxcosy}\:\mathrm{sinxsiny}+\mathrm{sin}^{\mathrm{2}} \mathrm{xsin}^{\mathrm{2}} \mathrm{y}+\mathrm{cos}^{\mathrm{2}} \mathrm{xcos}^{\mathrm{2}} \mathrm{y} \\ $$$$+\mathrm{2cosx}\:\mathrm{cosysinx}\:\mathrm{siny}\:+\mathrm{sin}^{\mathrm{2}} \mathrm{xsin}^{\mathrm{2}} \mathrm{y}\:−\mathrm{cos}^{\mathrm{2}} \mathrm{xcos}^{\mathrm{2}} \mathrm{y} \\ $$$$=\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{sin}^{\mathrm{2}} \mathrm{y}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:\mathrm{cos}^{\mathrm{2}} \mathrm{y}\:\left(\mathrm{not}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{1}\right) \\ $$