Question Number 59833 by bhanukumarb2@gmail.com last updated on 15/May/19
Answered by tanmay last updated on 15/May/19
$${e}^{{i}\theta} ={cos}\theta+{isin}\theta \\ $$$${e}^{−{i}\theta} ={cos}\theta−{isin}\theta \\ $$$${cos}\theta=\frac{{e}^{{i}\theta} +{e}^{−{i}\theta} }{\mathrm{2}}\rightarrow{cosi}=\frac{{e}^{−\mathrm{1}} +{e}^{\mathrm{1}} }{\mathrm{2}}={a} \\ $$$${isin}\theta=\frac{{e}^{{i}\theta} −{e}^{−{i}\theta} }{\mathrm{2}}\rightarrow{isini}=\frac{{e}^{−\mathrm{1}} −{e}^{\mathrm{1}} }{\mathrm{2}}={b} \\ $$$${a}>{b} \\ $$$${coti}=\frac{{cosi}}{{sini}}=\frac{\frac{{e}^{−\mathrm{1}} +{e}^{\mathrm{1}} }{\mathrm{2}}}{\frac{{e}^{−\mathrm{1}} −{e}^{\mathrm{1}} }{\mathrm{2}{i}}}=\frac{{a}}{\frac{{b}}{{i}}}={i}\left(\frac{{a}}{{b}}\right) \\ $$$${tani}=\frac{{sini}}{{cosi}}=\frac{\frac{{e}^{−\mathrm{1}} −{e}}{\mathrm{2}{i}}}{\frac{{e}^{−\mathrm{1}} +{e}}{\mathrm{2}}}=\frac{\frac{{b}}{{i}}}{{a}}=\left(\frac{{b}}{{a}}\right)×\frac{\mathrm{1}}{{i}}=−\left(\frac{{b}}{{a}}\right){i} \\ $$$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\left({cosi}\right)^{{t}} +\left({isini}\right)^{{t}} }{\left({tani}\right)^{{t}} +\left({coti}\right)^{{t}} }\right)^{\frac{\mathrm{1}}{{t}}} \\ $$$$=\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{{a}^{{t}} +{b}^{{t}} }{\left(\frac{−{bi}}{{a}}\right)^{{t}} +\left(\frac{{a}}{{b}}{i}\right)^{{t}} }\right]^{\frac{\mathrm{1}}{{t}}} \\ $$$$=\underset{{t}\rightarrow\infty} {\mathrm{lim}}\left[\frac{{a}^{{t}} +{b}^{{t}} }{\frac{\left(−{b}\right)^{{t}} ×{i}^{{t}} }{{a}^{{t}} }+\frac{{a}^{{t}} }{{b}^{{t}} }×{i}^{{t}} }\right]^{\frac{\mathrm{1}}{{t}}} \\ $$$$=\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{{a}^{{t}} {b}^{{t}} \left({a}^{{t}} +{b}^{{t}} \right)}{{b}^{\mathrm{2}{t}} ×\left(−\mathrm{1}\right)^{{t}} ×{i}^{{t}} +{a}^{\mathrm{2}{t}} ×{i}^{{t}} }\right]^{\frac{\mathrm{1}}{{t}}} \\ $$$$=\underset{{t}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\mathrm{1}}{{i}^{{t}} }×\frac{{a}^{\mathrm{2}{t}} {b}^{{t}} +{a}^{{t}} {b}^{\mathrm{2}{t}} }{{a}^{\mathrm{2}{t}} +\left(−\mathrm{1}\right)^{{t}} {b}^{\mathrm{2}{t}} }\right]^{\frac{\mathrm{1}}{{t}}} \rightarrow\left[{a}>{b}\right] \\ $$$$ \\ $$$$=\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{\mathrm{1}}{{i}^{{t}} }×\frac{{b}^{{t}} +\frac{{b}^{\mathrm{2}{t}} }{{a}^{{t}} }}{\mathrm{1}+\left(−\mathrm{1}\right)\frac{{b}^{\mathrm{2}{t}} }{{a}^{\mathrm{2}{t}} }}\right]^{\frac{\mathrm{1}}{{t}}} \\ $$$$=\underset{{t}\rightarrow\infty} {\mathrm{lim}}\left[\left(\frac{{b}}{{i}}\right)^{{t}} \right]^{\frac{\mathrm{1}}{{t}}} \\ $$$$=\frac{{b}}{{i}}=\frac{{e}^{−\mathrm{1}} −{e}^{\mathrm{1}} }{\mathrm{2}{i}}=\frac{{i}\left({e}−\frac{\mathrm{1}}{{e}}\right)}{\mathrm{2}}={z} \\ $$$${imz}=\frac{{e}−\frac{\mathrm{1}}{{e}}}{\mathrm{2}} \\ $$$$\left({imz}\right)^{\mathrm{2}} +\mathrm{1} \\ $$$$=\frac{{e}^{\mathrm{2}} −\mathrm{2}+\frac{\mathrm{1}}{{e}^{\mathrm{2}} }}{\mathrm{4}}+\mathrm{1} \\ $$$$=\frac{{e}^{\mathrm{2}} +\mathrm{2}+\frac{\mathrm{1}}{{e}^{\mathrm{2}} }}{\mathrm{4}}=\left(\frac{{e}+\frac{\mathrm{1}}{{e}}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${so}\: \\ $$$${imz}+\sqrt{\left({imz}\right)^{\mathrm{2}} +\mathrm{1}}\: \\ $$$$=\frac{{e}−\frac{\mathrm{1}}{{e}}}{\mathrm{2}}+\frac{{e}+\frac{\mathrm{1}}{{e}}}{\mathrm{2}} \\ $$$$={e}\:{proved} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${y}=\underset{{t}\rightarrow\infty} {\mathrm{li}} \\ $$$$ \\ $$