Question Number 59998 by Mr X pcx last updated on 16/May/19
$${find}\:\int\:\frac{{dx}}{{acosx}\:+{bsinx}}\:\:{with}\:{a}\:{and}\:{b}\:{reals} \\ $$
Commented by mr W last updated on 16/May/19
$${a}\:\mathrm{cos}\:{x}+{b}\:\mathrm{sin}\:{x}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left(\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:\mathrm{cos}\:{x}+\frac{{b}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:\mathrm{sin}\:{x}\right) \\ $$$$=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left(\mathrm{sin}\:\theta\:\mathrm{cos}\:{x}+\mathrm{cos}\:\theta\:\mathrm{sin}\:{x}\right) \\ $$$$=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\mathrm{sin}\:\left({x}+\theta\right) \\ $$$${with}\:\theta=\mathrm{tan}^{−\mathrm{1}} \frac{{a}}{{b}} \\ $$$$\int\:\frac{{dx}}{{acosx}\:+{bsinx}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\int\:\frac{{dx}}{{sin}\left({x}+\theta\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}×\mathrm{ln}\:\frac{\mathrm{1}−\mathrm{cos}\:\left({x}+\theta\right)}{\mathrm{1}+\mathrm{cos}\:\left({x}+\theta\right)}+{C} \\ $$
Commented by maxmathsup by imad last updated on 17/May/19
$${thanks}\:{you}\:{sir}\:. \\ $$
Commented by maxmathsup by imad last updated on 17/May/19
$${let}\:{I}\:=\int\:\:\frac{{dx}}{{acosx}\:+{bsinx}}\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:\:{give} \\ $$$${I}\:=\int\:\:\frac{\mathrm{1}}{{a}\:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:+{b}\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\int\:\:\frac{\mathrm{2}{dt}}{{a}−{at}^{\mathrm{2}} \:+\mathrm{2}{bt}}\:=\int\:\frac{−\mathrm{2}{dt}}{{at}^{\mathrm{2}} −\mathrm{2}{bt}−{a}}\:=\int\:{F}\left({t}\right){dt} \\ $$$${roots}\:{of}\:{at}^{\mathrm{2}} −\mathrm{2}{bt}\:−{a}\:=\mathrm{0}\:\rightarrow\Delta^{'} ={b}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \:\:{for}\:{a}\neq\mathrm{0}\:\:\Rightarrow\Delta^{'} >\mathrm{0}\:\Rightarrow \\ $$$${t}_{\mathrm{1}} =\frac{{b}+\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{{a}}\:\:{and}\:{t}_{\mathrm{2}} =\frac{{b}−\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{{a}}\:\Rightarrow{F}\left({t}\right)\:=\frac{−\mathrm{2}}{{a}\left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)} \\ $$$$=\frac{−\mathrm{2}}{{a}\left({t}_{\mathrm{1}} −{t}_{\mathrm{2}} \right)}\left\{\:\frac{\mathrm{1}}{{t}−{t}_{\mathrm{1}} }\:−\frac{\mathrm{1}}{{t}−{t}_{\mathrm{2}} }\right\}\:=\frac{−\mathrm{2}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\left\{\frac{\mathrm{1}}{{t}−{t}_{\mathrm{1}} }\:−\frac{\mathrm{1}}{{t}−{t}_{\mathrm{2}} }\right\}\:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{ln}\mid\frac{{t}−{t}_{\mathrm{1}} }{{t}−{t}_{\mathrm{2}} }\mid\:+{C}\:=\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{ln}\mid\frac{{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\frac{{b}+\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{{a}}}{{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\frac{{b}−\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{{a}}}\mid\:+{C} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{ln}\mid\frac{{atan}\left(\frac{{x}}{\mathrm{2}}\right)−{b}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{atan}\left(\frac{{x}}{\mathrm{2}}\right)−{b}\:+\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\mid\:+{C}\:. \\ $$
Answered by kaivan.ahmadi last updated on 16/May/19