Menu Close

1-6-1-2-6-2-3-6-3-n-6-n-




Question Number 125663 by Mammadli last updated on 12/Dec/20
(1/6^1 )+(2/6^2 )+(3/6^3 )+...+(n/6^n )=?
$$\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{1}} }+\frac{\mathrm{2}}{\mathrm{6}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{6}^{\mathrm{3}} }+…+\frac{{n}}{\mathrm{6}^{{n}} }=? \\ $$
Answered by Dwaipayan Shikari last updated on 12/Dec/20
S=(1/6)+(2/6^2 )+(3/6^3 )+..+(n/6^n )  −(S/6)=   −(1/6^2 )−(2/6^3 )−...−(n/6^(n+1) )  ((5S)/6)=(1/6)+(1/6^2 )+..+(1/6^n )−(n/6^(n+1) ) ⇒S=(6/5)(((1−6^(−n) )/5)−(n/6^(n+1) ))    S=((6−6^(1−n) )/(25))−(n/(5.6^n ))
$${S}=\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{2}}{\mathrm{6}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{6}^{\mathrm{3}} }+..+\frac{{n}}{\mathrm{6}^{{n}} } \\ $$$$−\frac{{S}}{\mathrm{6}}=\:\:\:−\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{2}} }−\frac{\mathrm{2}}{\mathrm{6}^{\mathrm{3}} }−…−\frac{{n}}{\mathrm{6}^{{n}+\mathrm{1}} } \\ $$$$\frac{\mathrm{5}{S}}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{2}} }+..+\frac{\mathrm{1}}{\mathrm{6}^{{n}} }−\frac{{n}}{\mathrm{6}^{{n}+\mathrm{1}} }\:\Rightarrow{S}=\frac{\mathrm{6}}{\mathrm{5}}\left(\frac{\mathrm{1}−\mathrm{6}^{−{n}} }{\mathrm{5}}−\frac{{n}}{\mathrm{6}^{{n}+\mathrm{1}} }\right)\:\: \\ $$$${S}=\frac{\mathrm{6}−\mathrm{6}^{\mathrm{1}−{n}} }{\mathrm{25}}−\frac{{n}}{\mathrm{5}.\mathrm{6}^{{n}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *