Menu Close

Question-125709




Question Number 125709 by mr W last updated on 13/Dec/20
Commented by mr W last updated on 13/Dec/20
the parabola of shape y=x^2  rolls  along the circle with radius r.   1. find the locus of its vertex A.  2. find the equation of parabola, when  its vertex becomes its topmost point  for the first time.
$${the}\:{parabola}\:{of}\:{shape}\:{y}={x}^{\mathrm{2}} \:{rolls} \\ $$$${along}\:{the}\:{circle}\:{with}\:{radius}\:{r}.\: \\ $$$$\mathrm{1}.\:{find}\:{the}\:{locus}\:{of}\:{its}\:{vertex}\:{A}. \\ $$$$\mathrm{2}.\:{find}\:{the}\:{equation}\:{of}\:{parabola},\:{when} \\ $$$${its}\:{vertex}\:{becomes}\:{its}\:{topmost}\:{point} \\ $$$${for}\:{the}\:{first}\:{time}. \\ $$
Answered by ajfour last updated on 13/Dec/20
Commented by ajfour last updated on 13/Dec/20
Contact point T(p, p^2 )  (with vertex of parabola as origin)  tan φ=2p  s=rθ=∫_0 ^( p) (√(1+4p^2 ))dp   =(1/4){2p(√(1+4p^2 ))+ln (2p+(√(1+4p^2 )))}  ⇒ 4rθ=sec φtan φ                    +ln (tan φ+sec φ)  O(p+rsin φ, p^2 −rcos φ)≡(h,k)  δ=θ+φ−(π/2)  eq. of y axis in pq or XY coordinate  Y−(p^2 −rcos φ)    =tan δ{X−(p+rsin φ)}  Y intercept  (X=0)  Y=p^2 −rcos φ−(p+rsin φ)tan δ  x=−Ycos δ  x=(p+rsin φ)sin δ         −(p^2 −rcos φ)cos δ  y=(k/(sin δ))+(x/(tan δ))  y=(((p^2 −rcos φ)/(sin δ)))+(p+rsin φ)cos δ           −(((p^2 −rcos φ)/(sin δ)))cos^2 δ    _________________________  y=(p+rsin φ)cos δ+(p^2 −rcos φ)sin δ  x=(p+rsin φ)sin δ−(p^2 −rcos φ)cos δ  2p=tan φ  δ=θ+φ−(π/2)  4rθ=sec φtan φ+ln (tan φ+sec φ)    _________________________  when vetex of parabola becomes  topmost point the first time in  xy plane then  θ+φ=π  ⇒  δ=(π/2)  y=p^2 −rcos φ  x=p+rsin φ  2p=tan φ
$${Contact}\:{point}\:{T}\left({p},\:{p}^{\mathrm{2}} \right) \\ $$$$\left({with}\:{vertex}\:{of}\:{parabola}\:{as}\:{origin}\right) \\ $$$$\mathrm{tan}\:\phi=\mathrm{2}{p} \\ $$$${s}={r}\theta=\int_{\mathrm{0}} ^{\:{p}} \sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }{dp} \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{4}}\left\{\mathrm{2}{p}\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }+\mathrm{ln}\:\left(\mathrm{2}{p}+\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }\right)\right\} \\ $$$$\Rightarrow\:\mathrm{4}{r}\theta=\mathrm{sec}\:\phi\mathrm{tan}\:\phi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\mathrm{sec}\:\phi\right) \\ $$$${O}\left({p}+{r}\mathrm{sin}\:\phi,\:{p}^{\mathrm{2}} −{r}\mathrm{cos}\:\phi\right)\equiv\left({h},{k}\right) \\ $$$$\delta=\theta+\phi−\frac{\pi}{\mathrm{2}} \\ $$$${eq}.\:{of}\:{y}\:{axis}\:{in}\:{pq}\:{or}\:{XY}\:{coordinate} \\ $$$${Y}−\left({p}^{\mathrm{2}} −{r}\mathrm{cos}\:\phi\right) \\ $$$$\:\:=\mathrm{tan}\:\delta\left\{{X}−\left({p}+{r}\mathrm{sin}\:\phi\right)\right\} \\ $$$${Y}\:{intercept}\:\:\left({X}=\mathrm{0}\right) \\ $$$${Y}={p}^{\mathrm{2}} −{r}\mathrm{cos}\:\phi−\left({p}+{r}\mathrm{sin}\:\phi\right)\mathrm{tan}\:\delta \\ $$$${x}=−{Y}\mathrm{cos}\:\delta \\ $$$${x}=\left({p}+{r}\mathrm{sin}\:\phi\right)\mathrm{sin}\:\delta \\ $$$$\:\:\:\:\:\:\:−\left({p}^{\mathrm{2}} −{r}\mathrm{cos}\:\phi\right)\mathrm{cos}\:\delta \\ $$$${y}=\frac{{k}}{\mathrm{sin}\:\delta}+\frac{{x}}{\mathrm{tan}\:\delta} \\ $$$${y}=\left(\frac{{p}^{\mathrm{2}} −{r}\mathrm{cos}\:\phi}{\mathrm{sin}\:\delta}\right)+\left({p}+{r}\mathrm{sin}\:\phi\right)\mathrm{cos}\:\delta \\ $$$$\:\:\:\:\:\:\:\:\:−\left(\frac{{p}^{\mathrm{2}} −{r}\mathrm{cos}\:\phi}{\mathrm{sin}\:\delta}\right)\mathrm{cos}\:^{\mathrm{2}} \delta \\ $$$$\:\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${y}=\left({p}+{r}\mathrm{sin}\:\phi\right)\mathrm{cos}\:\delta+\left({p}^{\mathrm{2}} −{r}\mathrm{cos}\:\phi\right)\mathrm{sin}\:\delta \\ $$$${x}=\left({p}+{r}\mathrm{sin}\:\phi\right)\mathrm{sin}\:\delta−\left({p}^{\mathrm{2}} −{r}\mathrm{cos}\:\phi\right)\mathrm{cos}\:\delta \\ $$$$\mathrm{2}{p}=\mathrm{tan}\:\phi \\ $$$$\delta=\theta+\phi−\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{4}{r}\theta=\mathrm{sec}\:\phi\mathrm{tan}\:\phi+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\mathrm{sec}\:\phi\right) \\ $$$$\:\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${when}\:{vetex}\:{of}\:{parabola}\:{becomes} \\ $$$${topmost}\:{point}\:{the}\:{first}\:{time}\:{in} \\ $$$${xy}\:{plane}\:{then}\:\:\theta+\phi=\pi \\ $$$$\Rightarrow\:\:\delta=\frac{\pi}{\mathrm{2}} \\ $$$${y}={p}^{\mathrm{2}} −{r}\mathrm{cos}\:\phi \\ $$$${x}={p}+{r}\mathrm{sin}\:\phi \\ $$$$\mathrm{2}{p}=\mathrm{tan}\:\phi \\ $$
Commented by mr W last updated on 13/Dec/20
perfect! your approach is very smart.
$${perfect}!\:{your}\:{approach}\:{is}\:{very}\:{smart}. \\ $$
Commented by ajfour last updated on 13/Dec/20
i shall have to edit, sir. I tried plotting, it dint come out correct on grapher...
Commented by mr W last updated on 13/Dec/20
i found all correct sir. locus is correct.  from δ=(π/2) we get p=1.7555.
$${i}\:{found}\:{all}\:{correct}\:{sir}.\:{locus}\:{is}\:{correct}. \\ $$$${from}\:\delta=\frac{\pi}{\mathrm{2}}\:{we}\:{get}\:{p}=\mathrm{1}.\mathrm{7555}. \\ $$
Commented by mr W last updated on 13/Dec/20
Answered by mr W last updated on 13/Dec/20
Commented by mr W last updated on 13/Dec/20
P(t,t^2 ) in x′y′−system  AP_(Parabola) =(1/4)[ln (2t+(√(1+4t^2 )))+2t(√(1+4t^2 ))]  AP_(Circle) =rϕ  ⇒ϕ=(1/(4r))[ln (2t+(√(1+4t^2 )))+2t(√(1+4t^2 ))]  tan θ=2t  sin θ=((2t)/( (√(1+4t^2 ))))  cos θ=(1/( (√(1+4t^2 ))))    P(r sin ϕ, r cos ϕ) in xy−system  φ=θ+ϕ−(π/2)  x_A =r sin ϕ+t sin φ−(t^2 −f)cos φ  =r sin ϕ−t cos (θ+ϕ) −(t^2 −f)sin (θ+ϕ)  =r sin ϕ−t cos θ cos ϕ+t sin θ sin ϕ −(t^2 −f)sin θ cos ϕ−(t^2 −f)cos θ sin ϕ  =r sin ϕ−cos θ [(t^2 −f) sin ϕ+t cos ϕ]+sin θ[t sin ϕ −(t^2 −f)cos ϕ]  =r sin ϕ−(1/( (√(1+4t^2 )))) [(t^2 −f) sin ϕ+t cos ϕ]+((2t)/( (√(1+4t^2 ))))[t sin ϕ −(t^2 −f)cos ϕ]    y_A =r cos ϕ+t cos φ+(t^2 −f)sin φ  =r cos ϕ+t sin (θ+ϕ)−(t^2 −f)cos (θ+ϕ)  =r cos ϕ+t sin θ cos ϕ+t cos θ sin ϕ−(t^2 −f)cos θ cos ϕ+(t^2 −f)sin θ sin ϕ  =r cos ϕ+ cos θ[t sin ϕ−(t^2 −f) cos ϕ]+sin θ[(t^2 −f)sin ϕ+t cos ϕ]  =r cos ϕ+ (1/( (√(1+4t^2 ))))[t sin ϕ−(t^2 −f) cos ϕ]+((2t)/( (√(1+4t^2 ))))[(t^2 −f)sin ϕ+t cos ϕ]  A: { ((x=r sin ϕ−(1/( (√(1+4t^2 )))) [(t^2 −f) sin ϕ+t cos ϕ]+((2t)/( (√(1+4t^2 ))))[t sin ϕ −(t^2 −f)cos ϕ])),((y=r cos ϕ+ (1/( (√(1+4t^2 ))))[t sin ϕ−(t^2 −f) cos ϕ]+((2t)/( (√(1+4t^2 ))))[(t^2 −f)sin ϕ+t cos ϕ])) :}  (offset f is introduced here to treat a  different point other than the vertex)    when A is topmost in xy−system:  φ=(π/2)  θ+ϕ=π  tan^(−1) (2t)+(1/(4r))[ln (2t+(√(1+4t^2 )))+2t(√(1+4t^2 ))]=π  ⇒t≈1.7556
$${P}\left({t},{t}^{\mathrm{2}} \right)\:{in}\:{x}'{y}'−{system} \\ $$$${AP}_{{Parabola}} =\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\:\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right] \\ $$$${AP}_{{Circle}} ={r}\varphi \\ $$$$\Rightarrow\varphi=\frac{\mathrm{1}}{\mathrm{4}{r}}\left[\mathrm{ln}\:\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right] \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{t} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }} \\ $$$$\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }} \\ $$$$ \\ $$$${P}\left({r}\:\mathrm{sin}\:\varphi,\:{r}\:\mathrm{cos}\:\varphi\right)\:{in}\:{xy}−{system} \\ $$$$\phi=\theta+\varphi−\frac{\pi}{\mathrm{2}} \\ $$$${x}_{{A}} ={r}\:\mathrm{sin}\:\varphi+{t}\:\mathrm{sin}\:\phi−\left({t}^{\mathrm{2}} −{f}\right)\mathrm{cos}\:\phi \\ $$$$={r}\:\mathrm{sin}\:\varphi−{t}\:\mathrm{cos}\:\left(\theta+\varphi\right)\:−\left({t}^{\mathrm{2}} −{f}\right)\mathrm{sin}\:\left(\theta+\varphi\right) \\ $$$$={r}\:\mathrm{sin}\:\varphi−{t}\:\mathrm{cos}\:\theta\:\mathrm{cos}\:\varphi+{t}\:\mathrm{sin}\:\theta\:\mathrm{sin}\:\varphi\:−\left({t}^{\mathrm{2}} −{f}\right)\mathrm{sin}\:\theta\:\mathrm{cos}\:\varphi−\left({t}^{\mathrm{2}} −{f}\right)\mathrm{cos}\:\theta\:\mathrm{sin}\:\varphi \\ $$$$={r}\:\mathrm{sin}\:\varphi−\mathrm{cos}\:\theta\:\left[\left({t}^{\mathrm{2}} −{f}\right)\:\mathrm{sin}\:\varphi+{t}\:\mathrm{cos}\:\varphi\right]+\mathrm{sin}\:\theta\left[{t}\:\mathrm{sin}\:\varphi\:−\left({t}^{\mathrm{2}} −{f}\right)\mathrm{cos}\:\varphi\right] \\ $$$$={r}\:\mathrm{sin}\:\varphi−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\:\left[\left({t}^{\mathrm{2}} −{f}\right)\:\mathrm{sin}\:\varphi+{t}\:\mathrm{cos}\:\varphi\right]+\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\left[{t}\:\mathrm{sin}\:\varphi\:−\left({t}^{\mathrm{2}} −{f}\right)\mathrm{cos}\:\varphi\right] \\ $$$$ \\ $$$${y}_{{A}} ={r}\:\mathrm{cos}\:\varphi+{t}\:\mathrm{cos}\:\phi+\left({t}^{\mathrm{2}} −{f}\right)\mathrm{sin}\:\phi \\ $$$$={r}\:\mathrm{cos}\:\varphi+{t}\:\mathrm{sin}\:\left(\theta+\varphi\right)−\left({t}^{\mathrm{2}} −{f}\right)\mathrm{cos}\:\left(\theta+\varphi\right) \\ $$$$={r}\:\mathrm{cos}\:\varphi+{t}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\varphi+{t}\:\mathrm{cos}\:\theta\:\mathrm{sin}\:\varphi−\left({t}^{\mathrm{2}} −{f}\right)\mathrm{cos}\:\theta\:\mathrm{cos}\:\varphi+\left({t}^{\mathrm{2}} −{f}\right)\mathrm{sin}\:\theta\:\mathrm{sin}\:\varphi \\ $$$$={r}\:\mathrm{cos}\:\varphi+\:\mathrm{cos}\:\theta\left[{t}\:\mathrm{sin}\:\varphi−\left({t}^{\mathrm{2}} −{f}\right)\:\mathrm{cos}\:\varphi\right]+\mathrm{sin}\:\theta\left[\left({t}^{\mathrm{2}} −{f}\right)\mathrm{sin}\:\varphi+{t}\:\mathrm{cos}\:\varphi\right] \\ $$$$={r}\:\mathrm{cos}\:\varphi+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\left[{t}\:\mathrm{sin}\:\varphi−\left({t}^{\mathrm{2}} −{f}\right)\:\mathrm{cos}\:\varphi\right]+\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\left[\left({t}^{\mathrm{2}} −{f}\right)\mathrm{sin}\:\varphi+{t}\:\mathrm{cos}\:\varphi\right] \\ $$$${A}:\begin{cases}{{x}={r}\:\mathrm{sin}\:\varphi−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\:\left[\left({t}^{\mathrm{2}} −{f}\right)\:\mathrm{sin}\:\varphi+{t}\:\mathrm{cos}\:\varphi\right]+\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\left[{t}\:\mathrm{sin}\:\varphi\:−\left({t}^{\mathrm{2}} −{f}\right)\mathrm{cos}\:\varphi\right]}\\{{y}={r}\:\mathrm{cos}\:\varphi+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\left[{t}\:\mathrm{sin}\:\varphi−\left({t}^{\mathrm{2}} −{f}\right)\:\mathrm{cos}\:\varphi\right]+\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\left[\left({t}^{\mathrm{2}} −{f}\right)\mathrm{sin}\:\varphi+{t}\:\mathrm{cos}\:\varphi\right]}\end{cases} \\ $$$$\left({offset}\:{f}\:{is}\:{introduced}\:{here}\:{to}\:{treat}\:{a}\right. \\ $$$$\left.{different}\:{point}\:{other}\:{than}\:{the}\:{vertex}\right) \\ $$$$ \\ $$$${when}\:{A}\:{is}\:{topmost}\:{in}\:{xy}−{system}: \\ $$$$\phi=\frac{\pi}{\mathrm{2}} \\ $$$$\theta+\varphi=\pi \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{t}\right)+\frac{\mathrm{1}}{\mathrm{4}{r}}\left[\mathrm{ln}\:\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right]=\pi \\ $$$$\Rightarrow{t}\approx\mathrm{1}.\mathrm{7556} \\ $$
Commented by mr W last updated on 13/Dec/20
Commented by ajfour last updated on 13/Dec/20
Sir, can you try and help plotting  my graph for the second part of  the question? i dont get it correct,  neither can find mistake in my  solution..
$${Sir},\:{can}\:{you}\:{try}\:{and}\:{help}\:{plotting} \\ $$$${my}\:{graph}\:{for}\:{the}\:{second}\:{part}\:{of} \\ $$$${the}\:{question}?\:{i}\:{dont}\:{get}\:{it}\:{correct}, \\ $$$${neither}\:{can}\:{find}\:{mistake}\:{in}\:{my} \\ $$$${solution}.. \\ $$
Commented by mr W last updated on 13/Dec/20
i found no mistake in your solution.  all is correct.
$${i}\:{found}\:{no}\:{mistake}\:{in}\:{your}\:{solution}. \\ $$$${all}\:{is}\:{correct}. \\ $$
Commented by ajfour last updated on 13/Dec/20
Thanks enormously Sir, I just  then need to learn plotting  on grapher the parametric way!
$${Thanks}\:{enormously}\:{Sir},\:{I}\:{just} \\ $$$${then}\:{need}\:{to}\:{learn}\:{plotting} \\ $$$${on}\:{grapher}\:{the}\:{parametric}\:{way}! \\ $$
Commented by mr W last updated on 15/Dec/20
great to see you again too!
$${great}\:{to}\:{see}\:{you}\:{again}\:{too}! \\ $$
Commented by Tinkutara last updated on 15/Dec/20
Great to see you both mrW and ajfour Sirs active still!
Commented by ajfour last updated on 15/Dec/20
how well are you doing at college,  engineering mathematics?
$${how}\:{well}\:{are}\:{you}\:{doing}\:{at}\:{college}, \\ $$$${engineering}\:{mathematics}? \\ $$
Commented by Tinkutara last updated on 16/Dec/20
I am doing Civil Engg from prestigious IIT.! Thanks for your support Sir!

Leave a Reply

Your email address will not be published. Required fields are marked *