Menu Close

proof-or-given-a-counter-example-if-x-n-is-a-no-limited-sequence-then-exist-a-sub-sequence-x-nk-that-lim-n-0-1-x-nk-0-




Question Number 481 by 123456 last updated on 12/Jan/15
proof or given a counter example:  if {x_n } is a no limited sequence  then  exist a sub−sequence {x_(nk) } that  lim_(n→0) (1/x_(nk) )=0
$${proof}\:{or}\:{given}\:{a}\:{counter}\:{example}: \\ $$$${if}\:\left\{{x}_{{n}} \right\}\:{is}\:{a}\:{no}\:{limited}\:{sequence} \\ $$$${then} \\ $$$${exist}\:{a}\:{sub}−{sequence}\:\left\{{x}_{{nk}} \right\}\:{that} \\ $$$$\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}_{{nk}} }=\mathrm{0} \\ $$
Commented by prakash jain last updated on 13/Jan/15
 lim_(n→0)  (1/x_(nk) )=0  do you mean sum of the sequence(1/x_(nk) )?
$$\:\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}_{{nk}} }=\mathrm{0}\:\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence}\frac{\mathrm{1}}{{x}_{{nk}} }? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *