Menu Close

Q-the-equation-cos-4x-m-cos-2x-has-no-solution-x-0-pi-2-find-the-acceptable-real-values-for-m-




Question Number 191512 by mnjuly1970 last updated on 25/Apr/23
       Q:       the equation            ⌊ cos(4x )⌋=m.cos(2x)     has no  solution .  x∈ (0, (π/2) )      find the acceptable         real values for    ”m”.
$$ \\ $$$$\:\:\:\:\:{Q}:\:\:\:\:\:\:\:{the}\:{equation}\: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\lfloor\:\mathrm{cos}\left(\mathrm{4}{x}\:\right)\rfloor={m}.\mathrm{cos}\left(\mathrm{2}{x}\right) \\ $$$$\:\:\:{has}\:{no}\:\:{solution}\:.\:\:{x}\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\:\right) \\ $$$$\:\:\:\:{find}\:{the}\:{acceptable} \\ $$$$\:\:\:\:\:\:\:{real}\:{values}\:{for}\:\:\:\:''{m}''. \\ $$
Answered by mahdipoor last updated on 26/Apr/23
[cos(4x)]=0,1,−1  ⇒^(no answer)    mcos(2x)≠0,1,−1  m≠((0,1,−1)/(cos(2x)))   ⇒^(1<cosx<−1)    m≠0,R−(−1,−1)  ⇒⇒m=[−1,1]
$$\left[{cos}\left(\mathrm{4}{x}\right)\right]=\mathrm{0},\mathrm{1},−\mathrm{1}\:\:\overset{{no}\:{answer}} {\Rightarrow}\:\:\:{mcos}\left(\mathrm{2}{x}\right)\neq\mathrm{0},\mathrm{1},−\mathrm{1} \\ $$$${m}\neq\frac{\mathrm{0},\mathrm{1},−\mathrm{1}}{{cos}\left(\mathrm{2}{x}\right)}\:\:\:\overset{\mathrm{1}<{cosx}<−\mathrm{1}} {\Rightarrow}\:\:\:{m}\neq\mathrm{0},{R}−\left(−\mathrm{1},−\mathrm{1}\right) \\ $$$$\Rightarrow\Rightarrow{m}=\left[−\mathrm{1},\mathrm{1}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *