Question Number 60587 by behi83417@gmail.com last updated on 22/May/19
$$\boldsymbol{\mathrm{x}}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{cosx}}=\boldsymbol{\mathrm{tg}}\mathrm{3}\boldsymbol{\mathrm{x}} \\ $$
Commented by MJS last updated on 22/May/19
$$\mathrm{tried}\:\mathrm{a}\:\mathrm{couple}\:\mathrm{of}\:\mathrm{different}\:\mathrm{substitutions},\:\mathrm{all} \\ $$$$\mathrm{lead}\:\mathrm{to}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{8}\:\mathrm{without}\:\mathrm{any} \\ $$$$\mathrm{exact}\:\mathrm{solution}.\:\mathrm{at}\:\mathrm{least}\:\mathrm{it}\:\mathrm{hasn}'\mathrm{t}\:\mathrm{been} \\ $$$$\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{one}. \\ $$
Answered by ajfour last updated on 22/May/19
$$\mathrm{let}\:\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}=\mathrm{t}\:\:,\:\mathrm{then} \\ $$$$\frac{\mathrm{2t}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }+\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }=\frac{\frac{\mathrm{6t}}{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }−\left(\frac{\mathrm{2t}}{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }\right)^{\mathrm{3}} }{\mathrm{1}−\mathrm{3}\left(\frac{\mathrm{2t}}{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\frac{\left(\mathrm{2t}+\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }=\frac{\mathrm{6t}\left(\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{8t}^{\mathrm{3}} }{\left(\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{3}} −\mathrm{12t}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\:\frac{\mathrm{2t}+\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }=\frac{\mathrm{2t}\left(\mathrm{3t}^{\mathrm{4}} −\mathrm{10t}^{\mathrm{2}} +\mathrm{3}\right)}{\left(\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{14t}^{\mathrm{2}} +\mathrm{t}^{\mathrm{4}} \right)} \\ $$$$\Rightarrow\:\:\left(\mathrm{2t}+\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{14t}^{\mathrm{2}} +\mathrm{t}^{\mathrm{4}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{2t}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{3t}^{\mathrm{4}} −\mathrm{10t}^{\mathrm{2}} +\mathrm{3}\right) \\ $$$$…. \\ $$
Answered by tanmay last updated on 22/May/19
$${trying}… \\ $$$${when}\:{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:\:\:{sinx}\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$${when}\:{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:\:{cosx}\:\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$${sinx}+{cosx} \\ $$$$\sqrt{\mathrm{2}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{sinx}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{cosx}\right) \\ $$$$=\sqrt{\mathrm{2}}\:{sin}\left(\frac{\pi}{\mathrm{4}}+{x}\right) \\ $$$${so}\:{when}\:{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:\:\left({sinx}+{cosx}\right)\in\left[\mathrm{1},\mathrm{1}.\mathrm{41}\right] \\ $$$$\frac{{x}}{\mathrm{3}{x}}\:\frac{\mathrm{10}^{{o}} }{\mathrm{30}^{{o}} }\:\frac{\mathrm{20}^{{o}} }{\mathrm{60}^{{o}} }\:\frac{\mathrm{30}^{{o}} }{\mathrm{90}^{{o}} }\:\frac{\mathrm{40}^{{o}} }{\mathrm{120}^{{o}} }\:\frac{\mathrm{50}^{{o}} }{\mathrm{150}^{\mathrm{0}} }\:\frac{\mathrm{60}^{{o}} }{\mathrm{180}^{{o}} }\:\frac{\mathrm{70}^{{o}} }{\mathrm{210}^{{o}} }\:\frac{\mathrm{80}^{{o}} }{\:\mathrm{240}^{{o}} }\:\frac{\mathrm{90}^{{l}} }{\mathrm{270}^{{o}} } \\ $$$${when}\:{x}=\mathrm{10}^{{o}} \:\:{tan}\mathrm{3}{x}\approx\mathrm{0}.\mathrm{58} \\ $$$${when}\:{x}=\mathrm{20}^{{o}} \:{tan}\mathrm{3}{x}\approx\mathrm{1}.\mathrm{73} \\ $$$${so}\:{when}\:{x}\in\left[\mathrm{10}^{{o}} ,\mathrm{20}^{{o}} \right]\:\:\:\:{tan}\mathrm{3}{x}=\left({sinx}+{cosx}\right) \\ $$$$\left(\mathrm{1}\right){so}\:{one}\:{root}\:{lie}\:{when}\:\:{x}\:\in\left[\frac{\pi}{\mathrm{18}},\frac{\mathrm{2}\pi}{\mathrm{18}}\right] \\ $$$${when}\:\:\:\:\mathrm{60}^{{o}} \:\geqslant{x}>\mathrm{30}^{{o}} \\ $$$$\:\:\mathrm{180}^{{o}} \geqslant\mathrm{3}{x}>\mathrm{90}^{{o}} \:\:\:{value}\:{of}\:{tan}\mathrm{3}{x}\:\left(−{ve}\right) \\ $$$${since}\:{angle}\:{lie}\:{in}\:{second}\:{quadrant}. \\ $$$${but}\:\left({sinx}+{cosx}\right)\in\left[\mathrm{1},\mathrm{1}.\mathrm{41}\right] \\ $$$$\left(\mathrm{2}\right)\boldsymbol{{so}}\:\boldsymbol{{no}}\:\boldsymbol{{root}}\:{lie}\:{when}\:\boldsymbol{{x}}\in\left[\frac{\mathrm{3}\pi}{\mathrm{18}},\frac{\mathrm{6}\pi}{\mathrm{18}}\right] \\ $$$${x}=\mathrm{70}^{{o}} \:\:{tan}\mathrm{3}{x}\approx\mathrm{0}.\mathrm{58} \\ $$$${x}=\mathrm{80}^{{o}} \:\:{tan}\mathrm{3}{x}\approx\mathrm{1}.\mathrm{73} \\ $$$${so}\:{one}\:{root}\:{lie}\:{when}\:{x}\in\left[\frac{\mathrm{7}\pi}{\mathrm{18}},\frac{\mathrm{8}\pi}{\mathrm{18}}\right] \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{given}}\:\boldsymbol{{equation}}\:\boldsymbol{{has}}\:\boldsymbol{{two}}\:\boldsymbol{{root}}\:\boldsymbol{{in}} \\ $$$$\boldsymbol{{x}}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$${pls}\:{check}… \\ $$$$ \\ $$
Commented by tanmay last updated on 22/May/19
$${most}\:{welcome}\:{sir} \\ $$
Commented by behi83417@gmail.com last updated on 22/May/19
$${thaks}\:{in}\:{advance}\:{all}\:{my}\:\:{best}\:{friends}. \\ $$$${sir}\:{tanmay}\:!{i}\:{think}\:{you}\:{are}\:{right}. \\ $$