Menu Close

A-particle-of-mass-m-moves-under-the-central-repulsive-force-mb-r-3-and-is-initially-moving-at-a-distance-a-from-the-origin-of-a-force-with-velocity-v-at-right-angle-to-a-show-that-




Question Number 191868 by Spillover last updated on 02/May/23
A particle of mass m moves under the central  repulsive force ((mb)/r^3 )  and is initially moving  at a distance ′a′  from the origin of  a force  with velocity  ′v′ at right angle to  ′a′.  show that          rcos pθ=a  where p =(b/(a^2 v^2 ))+1.
$${A}\:{particle}\:{of}\:{mass}\:{m}\:{moves}\:{under}\:{the}\:{central} \\ $$$${repulsive}\:{force}\:\frac{{mb}}{{r}^{\mathrm{3}} }\:\:{and}\:{is}\:{initially}\:{moving} \\ $$$${at}\:{a}\:{distance}\:'{a}'\:\:{from}\:{the}\:{origin}\:{of}\:\:{a}\:{force} \\ $$$${with}\:{velocity}\:\:'{v}'\:{at}\:{right}\:{angle}\:{to}\:\:'{a}'. \\ $$$${show}\:{that}\:\:\: \\ $$$$\:\:\:\:\:{r}\mathrm{cos}\:{p}\theta={a}\:\:{where}\:{p}\:=\frac{{b}}{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }+\mathrm{1}. \\ $$$$ \\ $$
Answered by mr W last updated on 03/May/23
Commented by Spillover last updated on 29/Jun/23
thanks for the sketch
$${thanks}\:{for}\:{the}\:{sketch} \\ $$
Answered by Spillover last updated on 15/Jul/24
The presence of the central force implies that  the angular momentum L is conserved  F(r)=((mb)/r^3 )             L=mr^2 θ  Given initial condition  ■ initial distance from the origin r=a  ■ initial velocity v perpendicular to a is given                 L=mav  Total energy of the particle is conserved consist  K.E and effective P.E[V_(eff) (r)]  V_(eff) (r)=(L^2 /(2mr^2 ))+((mb)/(2r^2 ))  L=mav  V_(eff) (r)=(L^2 /(2mr^2 ))+((mb)/(2r^2 ))  V_(eff) (r)=(((mav)^2 )/(2mr^2 ))+((mb)/(2r^2 ))=((m(a^2 v^2 +b))/(2r^2 ))  from Radial equation of the motion  (dθ/dt)=(L^2 /(mr^2 ))=((av)/r^2 )  The radial equation of the motion from  effective potential  m(d^2 r/dt^2 )=m(d^2 θ/dt^2 )=(L^2 /(mr^3 ))+((mb)/r^3 )  (d^2 r/dt^2 )=((a^2 v^2 +b)/r^3 )  from                   (dθ/dt)=(L^2 /(mr^2 ))=((av)/r^2 )  u=(1/r)                     (du/dθ)=−(1/r)(dr/dθ)  (d^2 r/dt^2 )=(d/dθ)((dr/dθ).(dθ/dt))  (d^2 r/dt^2 )=(d/dθ)((dr/dθ)).((dθ/dt))^2 +(dr/dθ).(d^2 θ/dt^2 )  but          (d^2 θ/dt^2 )=0  ((d^2 r/dθ^2 )).(((av)/r^2 ))^2   solve d.e for u  (d^2 θ/dt^2 )+u=((a^2 v^2 +b)/(a^2 v^2 ))u^3   (d^2 θ/dt^2 )+u=(1+(b/(a^2 v^2 )))u^3   given the boundary condition  u=(1/r)     at θ=0  u(θ)=(1/a)cos (pθ)   where p=1+(b/(a^2 v^2 ))
$${The}\:{presence}\:{of}\:{the}\:{central}\:{force}\:{implies}\:{that} \\ $$$${the}\:{angular}\:{momentum}\:{L}\:{is}\:{conserved} \\ $$$${F}\left({r}\right)=\frac{{mb}}{{r}^{\mathrm{3}} }\:\:\:\:\:\:\:\:\:\:\:\:\:{L}={mr}^{\mathrm{2}} \theta \\ $$$${Given}\:{initial}\:{condition} \\ $$$$\blacksquare\:{initial}\:{distance}\:{from}\:{the}\:{origin}\:{r}={a} \\ $$$$\blacksquare\:{initial}\:{velocity}\:{v}\:{perpendicular}\:{to}\:{a}\:{is}\:{given} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{L}={mav} \\ $$$${Total}\:{energy}\:{of}\:{the}\:{particle}\:{is}\:{conserved}\:{consist} \\ $$$${K}.{E}\:{and}\:{effective}\:{P}.{E}\left[{V}_{{eff}} \left({r}\right)\right] \\ $$$${V}_{{eff}} \left({r}\right)=\frac{{L}^{\mathrm{2}} }{\mathrm{2}{mr}^{\mathrm{2}} }+\frac{{mb}}{\mathrm{2}{r}^{\mathrm{2}} } \\ $$$${L}={mav} \\ $$$${V}_{{eff}} \left({r}\right)=\frac{{L}^{\mathrm{2}} }{\mathrm{2}{mr}^{\mathrm{2}} }+\frac{{mb}}{\mathrm{2}{r}^{\mathrm{2}} } \\ $$$${V}_{{eff}} \left({r}\right)=\frac{\left({mav}\right)^{\mathrm{2}} }{\mathrm{2}{mr}^{\mathrm{2}} }+\frac{{mb}}{\mathrm{2}{r}^{\mathrm{2}} }=\frac{{m}\left({a}^{\mathrm{2}} {v}^{\mathrm{2}} +{b}\right)}{\mathrm{2}{r}^{\mathrm{2}} } \\ $$$${from}\:{Radial}\:{equation}\:{of}\:{the}\:{motion} \\ $$$$\frac{{d}\theta}{{dt}}=\frac{{L}^{\mathrm{2}} }{{mr}^{\mathrm{2}} }=\frac{{av}}{{r}^{\mathrm{2}} } \\ $$$${The}\:{radial}\:{equation}\:{of}\:{the}\:{motion}\:{from} \\ $$$${effective}\:{potential} \\ $$$${m}\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }={m}\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\frac{{L}^{\mathrm{2}} }{{mr}^{\mathrm{3}} }+\frac{{mb}}{{r}^{\mathrm{3}} } \\ $$$$\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }=\frac{{a}^{\mathrm{2}} {v}^{\mathrm{2}} +{b}}{{r}^{\mathrm{3}} } \\ $$$${from}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{d}\theta}{{dt}}=\frac{{L}^{\mathrm{2}} }{{mr}^{\mathrm{2}} }=\frac{{av}}{{r}^{\mathrm{2}} } \\ $$$${u}=\frac{\mathrm{1}}{{r}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{du}}{{d}\theta}=−\frac{\mathrm{1}}{{r}}\frac{{dr}}{{d}\theta} \\ $$$$\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }=\frac{{d}}{{d}\theta}\left(\frac{{dr}}{{d}\theta}.\frac{{d}\theta}{{dt}}\right) \\ $$$$\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }=\frac{{d}}{{d}\theta}\left(\frac{{dr}}{{d}\theta}\right).\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} +\frac{{dr}}{{d}\theta}.\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} } \\ $$$${but}\:\:\:\:\:\:\:\:\:\:\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\left(\frac{{d}^{\mathrm{2}} {r}}{{d}\theta^{\mathrm{2}} }\right).\left(\frac{{av}}{{r}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$${solve}\:{d}.{e}\:{for}\:{u} \\ $$$$\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+{u}=\frac{{a}^{\mathrm{2}} {v}^{\mathrm{2}} +{b}}{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }{u}^{\mathrm{3}} \\ $$$$\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+{u}=\left(\mathrm{1}+\frac{{b}}{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }\right){u}^{\mathrm{3}} \\ $$$${given}\:{the}\:{boundary}\:{condition} \\ $$$${u}=\frac{\mathrm{1}}{{r}}\:\:\:\:\:{at}\:\theta=\mathrm{0} \\ $$$${u}\left(\theta\right)=\frac{\mathrm{1}}{{a}}\mathrm{cos}\:\left({p}\theta\right)\:\:\:{where}\:{p}=\mathrm{1}+\frac{{b}}{{a}^{\mathrm{2}} {v}^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *