Menu Close

Question-192001




Question Number 192001 by ajfour last updated on 05/May/23
Commented by ajfour last updated on 05/May/23
Find x, in terms of a, b, m=tan θ.
Findx,intermsofa,b,m=tanθ.
Answered by ajfour last updated on 05/May/23
say θ=2φ, x=c  cos (φ+sin^(−1) ((a−c)/(a+c))+sin^(−1) ((a−b)/(a+b))+φ)      =(((a+b)^2 −(b+c)^2 +(c+a)^2 )/(2(a+b)(c+a)))  say if φ=0  (((2(√(ac)))/(a+c)))(((2(√(ab)))/(a+b)))−(((a−c)/(a+c)))(((a−b)/(a+b)))  =(((a+b)^2 −(b+c)^2 +(c+a)^2 )/(2(a+b)(c+a)))  ⇒  4a(√(bc))−{a^2 −(b+c)a+bc}     =a^2 +a(b+c)−bc  ⇒  2a^2 −4a(√(bc))=0  ⇒  if a≠0   then  a=2(√(bc))  ✓
sayθ=2ϕ,x=ccos(ϕ+sin1aca+c+sin1aba+b+ϕ)=(a+b)2(b+c)2+(c+a)22(a+b)(c+a)sayifϕ=0(2aca+c)(2aba+b)(aca+c)(aba+b)=(a+b)2(b+c)2+(c+a)22(a+b)(c+a)4abc{a2(b+c)a+bc}=a2+a(b+c)bc2a24abc=0ifa0thena=2bc
Answered by mr W last updated on 05/May/23
Commented by mr W last updated on 05/May/23
cos α=((a−b)/(a+b))  cos β=((a−x)/(a+x))  cos γ=(((a+b)^2 +(a+x)^2 −(b+x)^2 )/(2(a+b)(a+x)))=((a(a+b)+(a−b)x)/(a(a+b)+(a+b)x))  α+β+γ=180+θ  γ=180+θ−(α+β)  let δ=α−θ=cos^(−1) ((a−b)/(a+b))−θ  cos γ=−cos (δ+β)=−cos δ cos β+sin δ sin β  ⇒((a(a+b)+(a−b)x)/(a(a+b)+(a+b)x))+(((a−x)/(a+x))) cos δ−sin δ (√(1−(((a−x)/(a+x)))^2 ))=0
cosα=aba+bcosβ=axa+xcosγ=(a+b)2+(a+x)2(b+x)22(a+b)(a+x)=a(a+b)+(ab)xa(a+b)+(a+b)xα+β+γ=180+θγ=180+θ(α+β)letδ=αθ=cos1aba+bθcosγ=cos(δ+β)=cosδcosβ+sinδsinβa(a+b)+(ab)xa(a+b)+(a+b)x+(axa+x)cosδsinδ1(axa+x)2=0

Leave a Reply

Your email address will not be published. Required fields are marked *