Question Number 126661 by mnjuly1970 last updated on 23/Dec/20
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:{calculus}… \\ $$$$\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\mathrm{1}+{x}^{\mathrm{4}} {ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{6}} }\right){dx}=? \\ $$$$ \\ $$
Commented by Dwaipayan Shikari last updated on 23/Dec/20
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+{x}^{\mathrm{4}} {log}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{6}} }{dx}\:\:\:\:\:\:\:\:\:{logx}={t} \\ $$$$=\int_{−\infty} ^{\mathrm{0}} \frac{\mathrm{1}+{e}^{\mathrm{4}{t}} {t}}{\mathrm{1}+{e}^{\mathrm{6}{t}} }{e}^{{t}} {dt}\:\:\:\:\:\:\:\:\:\:\:{t}=−{u} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{e}^{−\mathrm{4}{u}} {u}}{\mathrm{1}+{e}^{−\mathrm{6}{u}} }{e}^{−{u}} {du}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{\mathrm{5}{u}} −{e}^{{u}} {u}}{\mathrm{1}+{e}^{\mathrm{6}{u}} }{du} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{6}{un}+\mathrm{5}{u}} −\int_{\mathrm{0}} ^{\infty} {ue}^{−\mathrm{6}{un}+{u}} {du} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{\left(\mathrm{6}{n}−\mathrm{5}\right)}−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{\left(\mathrm{6}{n}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left(\frac{\mathrm{1}}{\left(\mathrm{6}{n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\left(\mathrm{6}{n}+\mathrm{5}\right)^{\mathrm{2}} }\right)=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{13}}−\frac{\mathrm{1}}{\mathrm{17}}+…\right)−\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{11}^{\mathrm{2}} }−. \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{6}{n}+\mathrm{1}}=\frac{\pi}{\mathrm{6}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{log}\left(\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\:\mathrm{2}}\right) \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{6}{n}+\mathrm{5}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{36}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\frac{\mathrm{5}}{\mathrm{6}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{144}}\left(\psi^{\mathrm{1}} \left(\frac{\mathrm{5}}{\mathrm{12}}\right)−\psi^{\mathrm{1}} \left(\frac{\mathrm{11}}{\mathrm{12}}\right)\right) \\ $$$$ \\ $$
Commented by Dwaipayan Shikari last updated on 23/Dec/20
$$\Rightarrow\psi^{\mathrm{1}} \left(\frac{\mathrm{11}}{\mathrm{12}}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{11}}{\mathrm{12}}\right)^{\mathrm{2}} }\Rightarrow\frac{\mathrm{1}}{\mathrm{144}}\psi^{\mathrm{1}} \left(\frac{\mathrm{11}}{\mathrm{12}}\right)=\frac{\mathrm{1}}{\mathrm{11}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{23}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{35}^{\mathrm{2}} }+… \\ $$$$\psi^{\mathrm{1}} \left(\frac{\mathrm{5}}{\mathrm{12}}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{5}}{\mathrm{12}}\right)^{\mathrm{2}} }\Rightarrow\frac{\mathrm{1}}{\mathrm{144}}\psi^{\mathrm{1}} \left(\frac{\mathrm{5}}{\mathrm{12}}\right)=\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{17}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{29}^{\mathrm{2}} }+… \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{6}{n}+\mathrm{5}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{11}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{17}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{29}^{\mathrm{2}} }+.=\frac{\mathrm{1}}{\mathrm{144}}\left(\psi^{\mathrm{1}} \left(\frac{\mathrm{5}}{\mathrm{12}}\right)−\psi^{\mathrm{1}} \left(\frac{\mathrm{11}}{\mathrm{12}}\right)\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 23/Dec/20
$${thank}\:{you}\:{so}\:{much}… \\ $$