Menu Close

show-for-all-n-N-that-3-1-5-n-5-is-divisible-by-1-3-n-3-




Question Number 192233 by gatocomcirrose last updated on 12/May/23
show for all n∈N that  3(1^5 +...+n^5 ) is divisible by 1^3 +...+n^3
$$\mathrm{show}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\in\mathrm{N}\:\mathrm{that} \\ $$$$\mathrm{3}\left(\mathrm{1}^{\mathrm{5}} +…+\mathrm{n}^{\mathrm{5}} \right)\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{1}^{\mathrm{3}} +…+\mathrm{n}^{\mathrm{3}} \\ $$
Commented by Frix last updated on 12/May/23
S_5 =Σ_(j=1) ^n  j^5  =((n^2 (n+1)^2 (2n^2 +2n−1))/(12))  S_3 =Σ_(j=1) ^n  j^3  =((n^2 (n+1)^2 )/4)  ((3S_5 )/S_3 )=2n^2 +2n−1
$${S}_{\mathrm{5}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\:{j}^{\mathrm{5}} \:=\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{12}} \\ $$$${S}_{\mathrm{3}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\:{j}^{\mathrm{3}} \:=\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\frac{\mathrm{3}{S}_{\mathrm{5}} }{{S}_{\mathrm{3}} }=\mathrm{2}{n}^{\mathrm{2}} +\mathrm{2}{n}−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *