Menu Close

let-consider-u-n-such-as-u-0-0-1-and-u-n-1-u-n-u-n-2-1-Prove-that-lim-n-n-u-n-1-and-that-the-convergence-domain-of-u-n-x-n-is-D-1-1-2-Prove-that-the-one-of-u-n-2-x-n




Question Number 126777 by snipers237 last updated on 24/Dec/20
let consider (u_n ) such as u_0 ∈]0;1[ and u_(n+1) =u_n −u_n ^2    1)Prove that lim_(n→∞) ^n (√u_n ) = 1 and that the convergence domain of Σu_n x^n    is  D=[−1;1[   2) Prove that the one of Σu_n ^2 x^n  is  I=[−1;1]
$$\left.{let}\:{consider}\:\left({u}_{{n}} \right)\:{such}\:{as}\:{u}_{\mathrm{0}} \in\right]\mathrm{0};\mathrm{1}\left[\:{and}\:{u}_{{n}+\mathrm{1}} ={u}_{{n}} −{u}_{{n}} ^{\mathrm{2}} \:\right. \\ $$$$\left.\mathrm{1}\right){Prove}\:{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:^{{n}} \sqrt{{u}_{{n}} }\:=\:\mathrm{1}\:{and}\:{that}\:{the}\:{convergence}\:{domain}\:{of}\:\Sigma{u}_{{n}} {x}^{{n}} \: \\ $$$${is}\:\:{D}=\left[−\mathrm{1};\mathrm{1}\left[\:\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{Prove}\:{that}\:{the}\:{one}\:{of}\:\Sigma{u}_{{n}} ^{\mathrm{2}} {x}^{{n}} \:{is}\:\:{I}=\left[−\mathrm{1};\mathrm{1}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *