Menu Close

a-plant-grow-up-1-67cm-in-the-first-week-after-that-it-grow-up-4-grow-up-more-than-the-first-week-every-week-how-much-will-grow-up-in-11th-week-




Question Number 192689 by sciencestudentW last updated on 24/May/23
a plant grow up 1.67cm in the first week  after that it grow up 4% grow up more  than the first week every week, how much  will grow up in 11th week?
$${a}\:{plant}\:{grow}\:{up}\:\mathrm{1}.\mathrm{67}{cm}\:{in}\:{the}\:{first}\:{week} \\ $$$${after}\:{that}\:{it}\:{grow}\:{up}\:\mathrm{4\%}\:{grow}\:{up}\:{more} \\ $$$${than}\:{the}\:{first}\:{week}\:{every}\:{week},\:{how}\:{much} \\ $$$${will}\:{grow}\:{up}\:{in}\:\mathrm{11}{th}\:{week}? \\ $$
Commented by sciencestudentW last updated on 24/May/23
?
$$? \\ $$
Answered by Skabetix last updated on 24/May/23
It remains 11−1=10 weeks  geometrical sequence  the 11^(th)  week the plant will grow up :  1.67×(1.04)^(10) ≈2.47 cm
$${It}\:{remains}\:\mathrm{11}−\mathrm{1}=\mathrm{10}\:{weeks} \\ $$$$\boldsymbol{{geome}}{trical}\:\boldsymbol{\mathrm{se}}{que}\boldsymbol{\mathrm{nce}} \\ $$$$\boldsymbol{\mathrm{the}}\:\mathrm{11}^{\boldsymbol{\mathrm{th}}} \:\boldsymbol{\mathrm{week}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{plant}}\:\boldsymbol{\mathrm{will}}\:\boldsymbol{\mathrm{grow}}\:\boldsymbol{\mathrm{up}}\:: \\ $$$$\mathrm{1}.\mathrm{67}×\left(\mathrm{1}.\mathrm{04}\right)^{\mathrm{10}} \approx\mathrm{2}.\mathrm{47}\:{cm} \\ $$
Commented by sciencestudentW last updated on 25/May/23
thanks great solotion!  the total hieght of plant in all 11 week  will be 1.67×(1.04)^1 +1.67×(1.04)×10^2 +...+1.67×(1.04)^(10) ?  ok?
$${thanks}\:{great}\:{solotion}! \\ $$$${the}\:{total}\:{hieght}\:{of}\:{plant}\:{in}\:{all}\:\mathrm{11}\:{week} \\ $$$${will}\:{be}\:\mathrm{1}.\mathrm{67}×\left(\mathrm{1}.\mathrm{04}\right)^{\mathrm{1}} +\mathrm{1}.\mathrm{67}×\left(\mathrm{1}.\mathrm{04}\right)×\mathrm{10}^{\mathrm{2}} +…+\mathrm{1}.\mathrm{67}×\left(\mathrm{1}.\mathrm{04}\right)^{\mathrm{10}} ?\:\:{ok}? \\ $$
Answered by manxsol last updated on 25/May/23
 determinant ((1,(1.67×1.04^0 )),(2,(1.67×1.04^1 )),(3,(1.67×1.04^2 )),(,),(,),(,),(,),((11),(1.67×1.04^(10) )),(n,(1.67×1.04^(n−1) )),(Σ_1 ^(11) ,(1.67 (((1.04^(11) −1)/(1.04−1))))))  1.67 (((1.04^(11) −1)/(1.04−1)))  22.522207  n=11  r=1.04  a_1 =1.67  Σprogresion geometric=  a_1 (((r^n −1))/(r−1))
$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}{\mathrm{1}}&\hline{\mathrm{1}.\mathrm{67}×\mathrm{1}.\mathrm{04}^{\mathrm{0}} }\\{\mathrm{2}}&\hline{\mathrm{1}.\mathrm{67}×\mathrm{1}.\mathrm{04}^{\mathrm{1}} }\\{\mathrm{3}}&\hline{\mathrm{1}.\mathrm{67}×\mathrm{1}.\mathrm{04}^{\mathrm{2}} }\\{}&\hline{}\\{}&\hline{}\\{}&\hline{}\\{}&\hline{}\\{\mathrm{11}}&\hline{\mathrm{1}.\mathrm{67}×\mathrm{1}.\mathrm{04}^{\mathrm{10}} }\\{{n}}&\hline{\mathrm{1}.\mathrm{67}×\mathrm{1}.\mathrm{04}^{{n}−\mathrm{1}} }\\{\sum_{\mathrm{1}} ^{\mathrm{11}} }&\hline{\mathrm{1}.\mathrm{67}\:\left(\frac{\mathrm{1}.\mathrm{04}^{\mathrm{11}} −\mathrm{1}}{\mathrm{1}.\mathrm{04}−\mathrm{1}}\right)}\\\hline\end{array} \\ $$$$\mathrm{1}.\mathrm{67}\:\left(\frac{\mathrm{1}.\mathrm{04}^{\mathrm{11}} −\mathrm{1}}{\mathrm{1}.\mathrm{04}−\mathrm{1}}\right) \\ $$$$\mathrm{22}.\mathrm{522207} \\ $$$${n}=\mathrm{11} \\ $$$${r}=\mathrm{1}.\mathrm{04} \\ $$$${a}_{\mathrm{1}} =\mathrm{1}.\mathrm{67} \\ $$$$\Sigma{progresion}\:{geometric}= \\ $$$${a}_{\mathrm{1}} \frac{\left({r}^{{n}} −\mathrm{1}\right)}{{r}−\mathrm{1}} \\ $$$$ \\ $$
Commented by sciencestudentW last updated on 28/May/23
nice
$${nice} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *