Menu Close

Question-192819




Question Number 192819 by cherokeesay last updated on 28/May/23
Answered by a.lgnaoui last updated on 28/May/23
△PBM  recrangle en B  ∡PMB=λ  △MAD  MA=(1/2)AD⇒∡AMD=∡MDC=(π/3)  MD=(√(AD^2 +(((AD)/2))^2 ))=((AD(√5))/2)  (AD=AB)  △PMB   et △PNC  semblables   ⇒∡PNC=∡PMB=λ   de plus  λ=θ  +x    (θ=∡DPM)    tanλ=((PB)/(MB)) =((BC+PC)/(BC/2))  △DPC  ((sin x)/(PC))=((cos x)/(CD))⇒PC=CDtan x=BCtan x  ⇒tan λ=((2BC(1+tan x))/(BC))=2(1+tan x)  (1)    △DNP   ((sin (x+(π/3)))/(MP))=((sin θ)/(MD))=((2sin (λ−x))/(AD(√5))) (2)    cos λ=((BC)/(2MP))    MP=((BC)/(2cos λ))  ⇒  ((2sin (x+(π/3))cos λ)/(BC))=((2sin (λ−x))/(BC(√5)))    ⇔sin (x+(π/3))cos λ=(((√5)sin (λ−x))/5)  (1/2)(sin x+(√3) cos x)cos λ=((√5)/5)(sin λcos x−cos λsin x)     (1/2)(tan x+(√3) )cos λ=((√5)/5)(sin λ−cos λtan x)  ⇔(1/2)(tan x+(√3) )=((√5)/5)(tan λ−tan x)    d apres (2)   tan λ=2(1+tan x)      (1/2)(tan  x+(√3) )=((√5)/5)(2+tan x)          tan x   =((((4(√5))/5)−(√3))/(1−((2(√5))/5)))=((4(√5) −5(√3))/(5−2(√5)))       x=tan^(−1) (((4(√5) −5(√3))/(5−2(√5))))    soit:                       x=28,28°
$$\bigtriangleup\mathrm{PBM}\:\:\mathrm{recrangle}\:\mathrm{en}\:\mathrm{B} \\ $$$$\measuredangle\mathrm{PMB}=\lambda \\ $$$$\bigtriangleup\mathrm{MAD}\:\:\mathrm{MA}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{AD}\Rightarrow\measuredangle\mathrm{AMD}=\measuredangle\mathrm{MDC}=\frac{\pi}{\mathrm{3}} \\ $$$$\mathrm{MD}=\sqrt{\mathrm{AD}^{\mathrm{2}} +\left(\frac{\mathrm{AD}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\mathrm{AD}\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\left(\mathrm{AD}=\mathrm{AB}\right) \\ $$$$\bigtriangleup\mathrm{PMB}\:\:\:\mathrm{et}\:\bigtriangleup\mathrm{PNC}\:\:\mathrm{semblables}\: \\ $$$$\Rightarrow\measuredangle\mathrm{PNC}=\measuredangle\mathrm{PMB}=\lambda\: \\ $$$$\mathrm{de}\:\mathrm{plus}\:\:\lambda=\theta\:\:+\mathrm{x}\:\:\:\:\left(\theta=\measuredangle\mathrm{DPM}\right) \\ $$$$\:\:\mathrm{tan}\lambda=\frac{\mathrm{PB}}{\mathrm{MB}}\:=\frac{\mathrm{BC}+\mathrm{PC}}{\mathrm{BC}/\mathrm{2}} \\ $$$$\bigtriangleup\mathrm{DPC}\:\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{PC}}=\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{CD}}\Rightarrow\mathrm{PC}=\mathrm{CDtan}\:\mathrm{x}=\mathrm{BCtan}\:\mathrm{x} \\ $$$$\Rightarrow\mathrm{tan}\:\lambda=\frac{\mathrm{2BC}\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)}{\mathrm{BC}}=\mathrm{2}\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)\:\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\bigtriangleup\mathrm{DNP}\:\:\:\frac{\mathrm{sin}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{MP}}=\frac{\mathrm{sin}\:\theta}{\mathrm{MD}}=\frac{\mathrm{2sin}\:\left(\lambda−\mathrm{x}\right)}{\mathrm{AD}\sqrt{\mathrm{5}}}\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{cos}\:\lambda=\frac{\mathrm{BC}}{\mathrm{2MP}}\:\:\:\:\mathrm{MP}=\frac{\mathrm{BC}}{\mathrm{2cos}\:\lambda} \\ $$$$\Rightarrow \\ $$$$\frac{\mathrm{2sin}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{3}}\right)\mathrm{cos}\:\lambda}{\mathrm{BC}}=\frac{\mathrm{2sin}\:\left(\lambda−\mathrm{x}\right)}{\mathrm{BC}\sqrt{\mathrm{5}}} \\ $$$$ \\ $$$$\Leftrightarrow\mathrm{sin}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{3}}\right)\mathrm{cos}\:\lambda=\frac{\sqrt{\mathrm{5}}\mathrm{sin}\:\left(\lambda−\mathrm{x}\right)}{\mathrm{5}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{sin}\:\mathrm{x}+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{x}\right)\mathrm{cos}\:\lambda=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\left(\mathrm{sin}\:\lambda\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\lambda\mathrm{sin}\:\mathrm{x}\right)\:\:\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{tan}\:\mathrm{x}+\sqrt{\mathrm{3}}\:\right)\mathrm{cos}\:\lambda=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\left(\mathrm{sin}\:\lambda−\mathrm{cos}\:\lambda\mathrm{tan}\:\mathrm{x}\right) \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{tan}\:\mathrm{x}+\sqrt{\mathrm{3}}\:\right)=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\left(\mathrm{tan}\:\lambda−\mathrm{tan}\:\mathrm{x}\right) \\ $$$$ \\ $$$$\mathrm{d}\:\mathrm{apres}\:\left(\mathrm{2}\right)\:\:\:\mathrm{tan}\:\lambda=\mathrm{2}\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right) \\ $$$$ \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{2}}\left(\boldsymbol{\mathrm{tan}}\:\:\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{3}}\:\right)=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\left(\mathrm{2}+\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}\right) \\ $$$$\:\:\: \\ $$$$\:\:\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}\:\:\:=\frac{\frac{\mathrm{4}\sqrt{\mathrm{5}}}{\mathrm{5}}−\sqrt{\mathrm{3}}}{\mathrm{1}−\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{5}}}=\frac{\mathrm{4}\sqrt{\mathrm{5}}\:−\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{x}}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}\sqrt{\mathrm{5}}\:−\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}}\right) \\ $$$$ \\ $$$$\boldsymbol{\mathrm{soit}}:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{x}}=\mathrm{28},\mathrm{28}° \\ $$$$ \\ $$
Commented by a.lgnaoui last updated on 28/May/23
Commented by cherokeesay last updated on 28/May/23
30° tout juste !
$$\mathrm{30}°\:{tout}\:{juste}\:! \\ $$
Answered by cherokeesay last updated on 28/May/23
Commented by MM42 last updated on 29/May/23
very nice
$${very}\:{nice} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *