Menu Close

find-the-domain-of-thefunction-f-x-1-x-2-x-2-where-is-the-fractional-part-function-




Question Number 192852 by York12 last updated on 29/May/23
  find the domain of thefunction  f(x) = (1/( (√(x^2 −{x}^2 ))))     where {.} is the fractional part function.
$$ \\ $$$${find}\:{the}\:{domain}\:{of}\:{thefunction} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −\left\{{x}\right\}^{\mathrm{2}} }}\:\:\:\:\:{where}\:\left\{.\right\}\:{is}\:{the}\:{fractional}\:{part}\:{function}. \\ $$
Commented by York12 last updated on 30/May/23
the answer is  (−∞−1) ∪ [−1 −(1/2)) ∪ [1 , ∞ )
$${the}\:{answer}\:{is} \\ $$$$\left(−\infty−\mathrm{1}\right)\:\cup\:\left[−\mathrm{1}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\:\cup\:\left[\mathrm{1}\:,\:\infty\:\right) \\ $$$$ \\ $$
Commented by MM42 last updated on 30/May/23
(−∞,−1)∪[−1,−(1/2)]∪[1,∞)=(−∞,−(1/2)]∪⌈1,∞)
$$\left.\left(−\infty,−\mathrm{1}\right)\cup\left[−\mathrm{1},−\frac{\mathrm{1}}{\mathrm{2}}\right]\cup\left[\mathrm{1},\infty\right)=\left(−\infty,−\frac{\mathrm{1}}{\mathrm{2}}\right]\cup\lceil\mathrm{1},\infty\right) \\ $$
Answered by MM42 last updated on 29/May/23
D=(−∞,−(1/2))∪[1,∞)
$${D}=\left(−\infty,−\frac{\mathrm{1}}{\mathrm{2}}\right)\cup\left[\mathrm{1},\infty\right) \\ $$
Commented by York12 last updated on 30/May/23
  How do you define {x} for x<0?  {−1.3}=−.3 is what I learned but I′ve  also seen {−1.3}=.7  {x}=x−⌊x⌋  for example x=−3.4  {−3.5}= −3.4 − ⌊−3.4⌋ = −3.4 +4 = .6
$$ \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{define}\:\left\{{x}\right\}\:\mathrm{for}\:{x}<\mathrm{0}? \\ $$$$\left\{−\mathrm{1}.\mathrm{3}\right\}=−.\mathrm{3}\:\mathrm{is}\:\mathrm{what}\:\mathrm{I}\:\mathrm{learned}\:\mathrm{but}\:\mathrm{I}'\mathrm{ve} \\ $$$$\mathrm{also}\:\mathrm{seen}\:\left\{−\mathrm{1}.\mathrm{3}\right\}=.\mathrm{7} \\ $$$$\left\{{x}\right\}={x}−\lfloor{x}\rfloor \\ $$$${for}\:{example}\:{x}=−\mathrm{3}.\mathrm{4} \\ $$$$\left\{−\mathrm{3}.\mathrm{5}\right\}=\:−\mathrm{3}.\mathrm{4}\:−\:\lfloor−\mathrm{3}.\mathrm{4}\rfloor\:=\:−\mathrm{3}.\mathrm{4}\:+\mathrm{4}\:=\:.\mathrm{6} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by MM42 last updated on 30/May/23
In authoritative books and mathematical references ,the following difination is use   correct part. [x]=x−{x}   ;    0≤{x}<1  therfore  always   0≤ {x}<1
$$\mathcal{I}{n}\:{authoritative}\:{books}\:{and}\:{mathematical}\:{references}\:,{the}\:{following}\:{difination}\:{is}\:{use}\: \\ $$$${correct}\:{part}.\:\left[{x}\right]={x}−\left\{{x}\right\}\:\:\:;\:\:\:\:\mathrm{0}\leqslant\left\{{x}\right\}<\mathrm{1} \\ $$$${therfore}\:\:{always}\:\:\:\mathrm{0}\leqslant\:\left\{{x}\right\}<\mathrm{1} \\ $$
Commented by York12 last updated on 30/May/23
yeah sir exactly
$${yeah}\:{sir}\:{exactly}\: \\ $$
Commented by York12 last updated on 30/May/23
  (−∞,−1)∪[−1,−(1/2)]∪[1,∞)=(−∞,−(1/2)]∪⌈1,∞)  thanks sir yeah you are right
$$ \\ $$$$\left.\left(−\infty,−\mathrm{1}\right)\cup\left[−\mathrm{1},−\frac{\mathrm{1}}{\mathrm{2}}\right]\cup\left[\mathrm{1},\infty\right)=\left(−\infty,−\frac{\mathrm{1}}{\mathrm{2}}\right]\cup\lceil\mathrm{1},\infty\right) \\ $$$${thanks}\:{sir}\:{yeah}\:{you}\:{are}\:{right} \\ $$$$ \\ $$$$ \\ $$
Commented by MM42 last updated on 30/May/23
good luck
$${good}\:{luck} \\ $$
Answered by witcher3 last updated on 31/May/23
x^2 >{x}^2   x=[x]+{x}  if ∣x∣≥1⇒x^2 −1≥x^2 −{x}^2 >0  {x}∈[0,1[  if x∈]−1,1[  x∈]−1,0[  x=−1+{x}⇒  x^2 −{x}^2 =1−2{x}>0⇒{x}<(1/2)  ⇒x<−(1/2)⇒x∈]−1,−(1/2)[  if 1>x≥0  ⇒x={x}⇒x−{x}=0  ⇒D_f =]−∞,−(1/2)[∪[1,∞[
$$\mathrm{x}^{\mathrm{2}} >\left\{\mathrm{x}\right\}^{\mathrm{2}} \\ $$$$\mathrm{x}=\left[\mathrm{x}\right]+\left\{\mathrm{x}\right\} \\ $$$$\mathrm{if}\:\mid\mathrm{x}\mid\geqslant\mathrm{1}\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{1}\geqslant\mathrm{x}^{\mathrm{2}} −\left\{\mathrm{x}\right\}^{\mathrm{2}} >\mathrm{0} \\ $$$$\left\{\mathrm{x}\right\}\in\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$$$\left.\mathrm{if}\:\mathrm{x}\in\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{x}\in\right]−\mathrm{1},\mathrm{0}\left[\right. \\ $$$$\mathrm{x}=−\mathrm{1}+\left\{\mathrm{x}\right\}\Rightarrow \\ $$$$\mathrm{x}^{\mathrm{2}} −\left\{\mathrm{x}\right\}^{\mathrm{2}} =\mathrm{1}−\mathrm{2}\left\{\mathrm{x}\right\}>\mathrm{0}\Rightarrow\left\{\mathrm{x}\right\}<\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.\Rightarrow\mathrm{x}<−\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{x}\in\right]−\mathrm{1},−\frac{\mathrm{1}}{\mathrm{2}}\left[\right. \\ $$$$\mathrm{if}\:\mathrm{1}>\mathrm{x}\geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}=\left\{\mathrm{x}\right\}\Rightarrow\mathrm{x}−\left\{\mathrm{x}\right\}=\mathrm{0} \\ $$$$\left.\Rightarrow\mathrm{D}_{\mathrm{f}} =\right]−\infty,−\frac{\mathrm{1}}{\mathrm{2}}\left[\cup\left[\mathrm{1},\infty\left[\right.\right.\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *