Menu Close

derivate-of-csc-2x-by-definition-




Question Number 192867 by beto last updated on 30/May/23
derivate of  csc(2x) by  definition
$${derivate}\:{of}\:\:{csc}\left(\mathrm{2}{x}\right)\:{by}\:\:{definition} \\ $$
Answered by cortano12 last updated on 02/Jun/23
 ((d((1/(sin 2x))))/dx)=lim_(h→0)  (((1/(sin (2x+2h)))−(1/(sin 2x)))/h)   = lim_(h→0)  ((sin 2x−sin (2x+2h))/(h sin 2x sin (2x+2h)))   =(1/(sin^2  2x)) lim_(h→0)  ((2cos (2x+h) sin (−h))/h)   = ((−2cos 2x)/(sin^2 2x)) = −2cot 2x csc 2x
$$\:\frac{\mathrm{d}\left(\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{2x}}\right)}{\mathrm{dx}}=\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{sin}\:\left(\mathrm{2x}+\mathrm{2h}\right)}−\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{2x}}}{\mathrm{h}} \\ $$$$\:=\:\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{2x}−\mathrm{sin}\:\left(\mathrm{2x}+\mathrm{2h}\right)}{\mathrm{h}\:\mathrm{sin}\:\mathrm{2x}\:\mathrm{sin}\:\left(\mathrm{2x}+\mathrm{2h}\right)} \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\mathrm{2x}}\:\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\left(\mathrm{2x}+\mathrm{h}\right)\:\mathrm{sin}\:\left(−\mathrm{h}\right)}{\mathrm{h}} \\ $$$$\:=\:\frac{−\mathrm{2cos}\:\mathrm{2x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2x}}\:=\:−\mathrm{2cot}\:\mathrm{2x}\:\mathrm{csc}\:\mathrm{2x}\: \\ $$
Commented by Subhi last updated on 30/May/23
it must be −2cot(2x).csc(2x)  As  sin(2x)−sin(2x+2h)= −2cos(2x+h)sin(h)
$${it}\:{must}\:{be}\:−\mathrm{2}{cot}\left(\mathrm{2}{x}\right).{csc}\left(\mathrm{2}{x}\right) \\ $$$${As} \\ $$$${sin}\left(\mathrm{2}{x}\right)−{sin}\left(\mathrm{2}{x}+\mathrm{2}{h}\right)=\:−\mathrm{2}{cos}\left(\mathrm{2}{x}+{h}\right){sin}\left({h}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *