Menu Close

Evaluate-x-2-sin-x-dx-




Question Number 35 by user2 last updated on 25/Jan/15
Evaluate  ∫x^2 sin x dx
Evaluatex2sinxdx
Answered by surabhi last updated on 04/Nov/14
∫x^2 sin xdx=  =x^2 ∫sin x dx−∫[(d/dx)(x^2 )∙∫sin x]dx  =x^2 (−cos x)−∫2x(−cos x)dx  =−x^2 cos x+2∫x cos x dx  =−x^2 cos x+2[x(sin x)−∫{(d/dx)(x)∙∫cos x dx}dx]  =−x^2 cos x+2[x sin x−∫sin x dx]  =x^2 cos x+2[x sin x+cos x]+C
x2sinxdx==x2sinxdx[ddx(x2)sinx]dx=x2(cosx)2x(cosx)dx=x2cosx+2xcosxdx=x2cosx+2[x(sinx){ddx(x)cosxdx}dx]=x2cosx+2[xsinxsinxdx]=x2cosx+2[xsinx+cosx]+C