Question Number 127370 by mnjuly1970 last updated on 29/Dec/20
$$\:\:\:\:\:\:\:\:\:…\:\:{advanced}\:\:{calculus}\:\:.. \\ $$$$\:\:{prove}:: \\ $$$$\:\:\:\frac{\mathrm{1023}}{\mathrm{134}}\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{\frac{\mathrm{2}}{\mathrm{5}}} +{x}^{\frac{−\mathrm{2}}{\mathrm{5}}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{1024}{x}^{\mathrm{2}} \right)}{dx}=\frac{\pi}{\varphi} \\ $$$$\:\:\:\varphi:\:{golden}\:\:{ratio}… \\ $$$$ \\ $$
Commented by liberty last updated on 29/Dec/20
inkjesti ta 'livell għoli. straordinarja
Answered by mindispower last updated on 29/Dec/20
$$\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{1024}{x}^{\mathrm{2}} \right)}\:=\frac{{ax}+{b}}{\mathrm{1}+{x}^{\mathrm{2}} }+\frac{{cx}+{d}}{\mathrm{1}+\mathrm{1024}{x}^{\mathrm{2}} } \\ $$$${a}+\frac{{c}}{\mathrm{1024}}=\mathrm{0} \\ $$$${b}+{d}=\mathrm{1} \\ $$$${a}+{c}=\mathrm{0} \\ $$$${d}+\mathrm{1024}{b}=\mathrm{0} \\ $$$${b}=−\frac{\mathrm{1}}{\mathrm{1023}},{d}=\frac{\mathrm{1024}}{\mathrm{1023}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \left({x}^{\frac{\mathrm{2}}{\mathrm{5}}} +{x}^{−\frac{\mathrm{2}}{\mathrm{5}}} \right).\left(−\frac{\mathrm{1}}{\mathrm{1023}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}+\frac{\mathrm{1024}}{\mathrm{1023}\left(\mathrm{1}+\mathrm{1024}{x}^{\mathrm{2}} \right)}\right){dx}=\frac{\mathrm{134}}{\mathrm{1023}}\Omega \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{s}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{y}^{\frac{{s}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\:}{\mathrm{1}+{y}}.{dy}=\frac{\mathrm{1}}{\mathrm{2}}\beta\left(\frac{{s}+\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}−{s}}{\mathrm{2}}\right)..{I} \\ $$$$\beta\left({x},{y}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{x}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{{x}+{y}} }{dt},{i}\:{used}\:{that} \\ $$$$\frac{\mathrm{134}}{\mathrm{1023}}\Omega=−\frac{\mathrm{1}}{\mathrm{1023}}\left\{\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\frac{\mathrm{2}}{\mathrm{5}}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}+\int_{\mathrm{0}} ^{\infty} \frac{{x}^{−\frac{\mathrm{2}}{\mathrm{5}}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right\}_{={A}} \\ $$$$+\frac{\mathrm{1024}}{\mathrm{1023}}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\frac{\mathrm{2}}{\mathrm{5}}} +{x}^{−\frac{\mathrm{2}}{\mathrm{5}}} }{\mathrm{1}+\mathrm{1024}{x}^{\mathrm{2}} }\:_{={B}} \\ $$$${A}=−\frac{\mathrm{1}}{\mathrm{1023}}\left\{\beta\left(\frac{\mathrm{3}}{\mathrm{10}};\frac{\mathrm{7}}{\mathrm{10}}\right\}\:{used}..{I}\right. \\ $$$${B},{t}=\mathrm{32}\:{x}\Rightarrow=\frac{\mathrm{1024}}{\mathrm{1023}}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\frac{\mathrm{2}}{\mathrm{5}}} }{\mathrm{4}}.\frac{{dt}}{\mathrm{32}}.\frac{\mathrm{1}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}+\mathrm{4}{t}^{−\frac{\mathrm{2}}{\mathrm{5}}} .\frac{{dt}}{\mathrm{32}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{8}}{\mathrm{1023}}\:\:\:.\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\frac{\mathrm{2}}{\mathrm{5}}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}+\frac{\mathrm{128}}{\mathrm{1023}}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{−\frac{\mathrm{2}}{\mathrm{5}}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{8}}{\mathrm{1023}}.\frac{\beta\left(\frac{\mathrm{7}}{\mathrm{10}},\frac{\mathrm{3}}{\mathrm{10}}\right)}{\mathrm{2}}+\frac{\mathrm{128}}{\mathrm{1023}}.\frac{\beta\left(\frac{\mathrm{3}}{\mathrm{10}},\frac{\mathrm{7}}{\mathrm{10}}\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{68}}{\mathrm{1023}}\beta\left(\frac{\mathrm{7}}{\mathrm{10}};\frac{\mathrm{3}}{\mathrm{10}}\right) \\ $$$$=\frac{\mathrm{67}}{\mathrm{1023}}.\frac{\pi}{{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)}=\frac{\mathrm{67}.\pi}{\mathrm{1023}{cos}\left(\frac{\pi}{\mathrm{5}}\right)}=\frac{\mathrm{67}.\mathrm{2}\pi}{\mathrm{1023}\varphi}=\frac{\mathrm{134}\pi}{\mathrm{1023}\varphi} \\ $$$${cos}\left(\frac{\pi}{\mathrm{5}}\right)=\frac{\varphi}{\mathrm{2}} \\ $$$$\frac{\mathrm{134}}{\mathrm{1023}}\Omega=\frac{\mathrm{134}\pi}{\mathrm{1023}\varphi}\Leftrightarrow\Omega=\frac{\pi}{\varphi} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 29/Dec/20
$${thanks}\:{alot}\:{sir}\:{power}\: \\ $$$$\:{very}\:{nice}\:{as}\:{always}.. \\ $$$${grateful}.. \\ $$