Menu Close

Can-this-be-optimized-getting-the-minimum-using-backprobagation-x-i-y-i-h-i-h-i-x-i-2-y-i-2-y-i-h-i-y-i-h-i-2-2uy-i-h-i-h-i-h-i-4-4uh-i-3-4u-2-h-i-2-Cost-i-0-m-




Question Number 192979 by Red1ight last updated on 01/Jun/23
Can this be optimized (getting the minimum) using backprobagation?    α(x_i ,y_i ,h_i )=(h_i −x_i )^2 +y_i ^2   β(y_i ,h_i )=y_i h_i ^2 −2uy_i h_i   γ(h_i )=h_i ^4 −4uh_i ^3 +4u^2 h_i ^2   Cost=Σ_(i=0) ^m (cα(x_i ,y_i ,h_i )−2c^2 β(y_i ,h_i )+c^3 γ(h_i ))  and how?
$$\mathrm{Can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{optimized}\:\left(\mathrm{getting}\:\mathrm{the}\:\mathrm{minimum}\right)\:\mathrm{using}\:\mathrm{backprobagation}? \\ $$$$ \\ $$$$\alpha\left({x}_{{i}} ,{y}_{{i}} ,{h}_{{i}} \right)=\left({h}_{{i}} −{x}_{{i}} \right)^{\mathrm{2}} +{y}_{{i}} ^{\mathrm{2}} \\ $$$$\beta\left({y}_{{i}} ,{h}_{{i}} \right)={y}_{{i}} {h}_{{i}} ^{\mathrm{2}} −\mathrm{2}{uy}_{{i}} {h}_{{i}} \\ $$$$\gamma\left({h}_{{i}} \right)={h}_{{i}} ^{\mathrm{4}} −\mathrm{4}{uh}_{{i}} ^{\mathrm{3}} +\mathrm{4}{u}^{\mathrm{2}} {h}_{{i}} ^{\mathrm{2}} \\ $$$$\mathrm{Cost}=\underset{{i}=\mathrm{0}} {\overset{{m}} {\sum}}\left(\mathrm{c}\alpha\left({x}_{{i}} ,{y}_{{i}} ,{h}_{{i}} \right)−\mathrm{2}{c}^{\mathrm{2}} \beta\left({y}_{{i}} ,{h}_{{i}} \right)+{c}^{\mathrm{3}} \gamma\left({h}_{{i}} \right)\right) \\ $$$$\mathrm{and}\:\mathrm{how}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *