Menu Close

let-x-0-t-x-1-e-t-dt-with-x-gt-1-calculate-n-x-for-all-integr-n-




Question Number 62416 by mathmax by abdo last updated on 20/Jun/19
let Γ(x)=∫_0 ^∞  t^(x−1) e^(−t)  dt   with x>1 calculate Γ^((n)) (x) for all integr n.
$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} \:{dt}\:\:\:{with}\:{x}>\mathrm{1}\:{calculate}\:\Gamma^{\left({n}\right)} \left({x}\right)\:{for}\:{all}\:{integr}\:{n}. \\ $$
Commented by mathmax by abdo last updated on 23/Jun/19
the function Γ is C^∞   on ]0,+∞[  we have Γ(x) =∫_0 ^∞  e^((x−1)ln(t))  e^(−t)  dt ⇒  Γ^((1)) (x) =∫_0 ^∞    ln(t) t^(x−1)  e^(−t)   dt    and by recurence we get  Γ^((n)) (x) =∫_0 ^∞  (ln(t))^n  t^(x−1)  e^(−t)   dt   ∀ n ≥1 .
$$\left.{the}\:{function}\:\Gamma\:{is}\:{C}^{\infty} \:\:{on}\:\right]\mathrm{0},+\infty\left[\:\:{we}\:{have}\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{\left({x}−\mathrm{1}\right){ln}\left({t}\right)} \:{e}^{−{t}} \:{dt}\:\Rightarrow\right. \\ $$$$\Gamma^{\left(\mathrm{1}\right)} \left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:{ln}\left({t}\right)\:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:\:{dt}\:\:\:\:{and}\:{by}\:{recurence}\:{we}\:{get} \\ $$$$\Gamma^{\left({n}\right)} \left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\left({ln}\left({t}\right)\right)^{{n}} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:\:{dt}\:\:\:\forall\:{n}\:\geqslant\mathrm{1}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *