Menu Close

Question-128197




Question Number 128197 by BHOOPENDRA last updated on 05/Jan/21
Commented by BHOOPENDRA last updated on 05/Jan/21
help me out this?
$${help}\:{me}\:{out}\:{this}? \\ $$
Answered by Dwaipayan Shikari last updated on 05/Jan/21
f(t)= { (((t−2)^2            t>2)),((0                     t<2)) :}  L(f(t))=∫_0 ^∞ e^(−st) (t−2)^2 dt = e^(−2s) ∫_0 ^∞ e^(−s(t−2)) (t−2)^2 dt  =e^(−2s) ∫_0 ^∞ e^(−su) u^2 du = e^(−2s) ((Γ(3))/s^3 )=((2e^(−2s) )/s^3 )
$${f}\left({t}\right)=\begin{cases}{\left({t}−\mathrm{2}\right)^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:{t}>\mathrm{2}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}<\mathrm{2}}\end{cases} \\ $$$$\mathscr{L}\left({f}\left({t}\right)\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} \left({t}−\mathrm{2}\right)^{\mathrm{2}} {dt}\:=\:{e}^{−\mathrm{2}{s}} \int_{\mathrm{0}} ^{\infty} {e}^{−{s}\left({t}−\mathrm{2}\right)} \left({t}−\mathrm{2}\right)^{\mathrm{2}} {dt} \\ $$$$={e}^{−\mathrm{2}{s}} \int_{\mathrm{0}} ^{\infty} {e}^{−{su}} {u}^{\mathrm{2}} {du}\:=\:{e}^{−\mathrm{2}{s}} \frac{\Gamma\left(\mathrm{3}\right)}{{s}^{\mathrm{3}} }=\frac{\mathrm{2}{e}^{−\mathrm{2}{s}} }{{s}^{\mathrm{3}} } \\ $$
Commented by BHOOPENDRA last updated on 05/Jan/21
thanks sir n second one?
$${thanks}\:{sir}\:{n}\:{second}\:{one}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *