Menu Close

1-4x-4-e-x-4-dx-




Question Number 128634 by liberty last updated on 09/Jan/21
θ = ∫ (1+4x^4 )e^x^4   dx
$$\theta\:=\:\int\:\left(\mathrm{1}+\mathrm{4x}^{\mathrm{4}} \right)\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \:\mathrm{dx}\: \\ $$
Answered by john_santu last updated on 09/Jan/21
θ=∫ e^x^4   dx + ∫ 4x^4  e^x^4   dx   let θ_1 =∫ x(4x^3 e^x^4   )dx  θ_1 =∫x d(e^x^4  ) = xe^x^4  −∫e^x^4   dx   then θ = ∫e^x^4   dx+xe^x^4  −∫e^x^4   dx   θ = x.e^x^4   + C
$$\theta=\int\:\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \:\mathrm{dx}\:+\:\int\:\mathrm{4x}^{\mathrm{4}} \:\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \:\mathrm{dx}\: \\ $$$$\mathrm{let}\:\theta_{\mathrm{1}} =\int\:\mathrm{x}\left(\mathrm{4x}^{\mathrm{3}} \mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \:\right)\mathrm{dx} \\ $$$$\theta_{\mathrm{1}} =\int\mathrm{x}\:\mathrm{d}\left(\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \right)\:=\:\mathrm{xe}^{\mathrm{x}^{\mathrm{4}} } −\int\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \:\mathrm{dx}\: \\ $$$$\mathrm{then}\:\theta\:=\:\int\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \:\mathrm{dx}+\mathrm{xe}^{\mathrm{x}^{\mathrm{4}} } −\int\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \:\mathrm{dx}\: \\ $$$$\theta\:=\:{x}.{e}^{{x}^{\mathrm{4}} } \:+\:{C}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *