Menu Close

If-tan-2-x-3tan-x-1-has-the-roots-are-x-1-and-x-2-then-find-the-value-of-cos-x-1-cos-x-2-




Question Number 128995 by bramlexs22 last updated on 12/Jan/21
If tan^2 x −3tan x=1 has the roots  are x_1  and x_2  then find the value  of ∣ cos x_1 .cos x_2  ∣.
$$\mathrm{If}\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}\:−\mathrm{3tan}\:\mathrm{x}=\mathrm{1}\:\mathrm{has}\:\mathrm{the}\:\mathrm{roots} \\ $$$$\mathrm{are}\:\mathrm{x}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{x}_{\mathrm{2}} \:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mid\:\mathrm{cos}\:\mathrm{x}_{\mathrm{1}} .\mathrm{cos}\:\mathrm{x}_{\mathrm{2}} \:\mid.\: \\ $$
Commented by liberty last updated on 12/Jan/21
 tan^2 x−3tan x−1=0   tan x = ((3 ± (√(13)))/2) → { ((tan x=((3+(√(13)))/2))),((tan x=((3−(√(13)))/2))) :}   { ((cos x = (2/( (√(26+6(√(13)))))))),((cos x = (2/( (√(26−6(√(13)))))))) :} then ∣ cos x_1 .cos x_2  ∣=(4/( (√(676−468))))=(4/(4(√(13)))) =(1/( (√(13))))
$$\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{3tan}\:\mathrm{x}−\mathrm{1}=\mathrm{0} \\ $$$$\:\mathrm{tan}\:\mathrm{x}\:=\:\frac{\mathrm{3}\:\pm\:\sqrt{\mathrm{13}}}{\mathrm{2}}\:\rightarrow\begin{cases}{\mathrm{tan}\:\mathrm{x}=\frac{\mathrm{3}+\sqrt{\mathrm{13}}}{\mathrm{2}}}\\{\mathrm{tan}\:\mathrm{x}=\frac{\mathrm{3}−\sqrt{\mathrm{13}}}{\mathrm{2}}}\end{cases} \\ $$$$\begin{cases}{\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{26}+\mathrm{6}\sqrt{\mathrm{13}}}}}\\{\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{26}−\mathrm{6}\sqrt{\mathrm{13}}}}}\end{cases}\:\mathrm{then}\:\mid\:\mathrm{cos}\:\mathrm{x}_{\mathrm{1}} .\mathrm{cos}\:\mathrm{x}_{\mathrm{2}} \:\mid=\frac{\mathrm{4}}{\:\sqrt{\mathrm{676}−\mathrm{468}}}=\frac{\mathrm{4}}{\mathrm{4}\sqrt{\mathrm{13}}}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{13}}} \\ $$$$\: \\ $$
Answered by Lordose last updated on 12/Jan/21
tan^2 x − 3tanx + (−(3/2))^2  = ((13)/4)  (tanx − (3/2))^2  = ((13)/4) ⇒ tan(x) = ((3±(√(13)))/2)  x_1  = tan^(−1) (((3+(√(13)))/2)) ⇒ cos(x_1 ) = (2/( (√(26+6(√(13))))))     x_2  = tan^(−1) (((3−(√(13)))/2)) ⇒ cos(x_2 ) = (2/( (√(26−6(√(13))))))       Hence, ∣cos(x_1 )cos(x_2 )∣ = (1/( (√(13))))
$$\mathrm{tan}^{\mathrm{2}} \mathrm{x}\:−\:\mathrm{3tanx}\:+\:\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{13}}{\mathrm{4}} \\ $$$$\left(\mathrm{tanx}\:−\:\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{13}}{\mathrm{4}}\:\Rightarrow\:\mathrm{tan}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{3}\pm\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$$\mathrm{x}_{\mathrm{1}} \:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}+\sqrt{\mathrm{13}}}{\mathrm{2}}\right)\:\Rightarrow\:\mathrm{cos}\left(\mathrm{x}_{\mathrm{1}} \right)\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{26}+\mathrm{6}\sqrt{\mathrm{13}}}}\:\:\: \\ $$$$\mathrm{x}_{\mathrm{2}} \:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}−\sqrt{\mathrm{13}}}{\mathrm{2}}\right)\:\Rightarrow\:\mathrm{cos}\left(\mathrm{x}_{\mathrm{2}} \right)\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{26}−\mathrm{6}\sqrt{\mathrm{13}}}}\:\:\:\:\: \\ $$$$\mathrm{Hence},\:\mid\mathrm{cos}\left(\mathrm{x}_{\mathrm{1}} \right)\mathrm{cos}\left(\mathrm{x}_{\mathrm{2}} \right)\mid\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{13}}} \\ $$$$ \\ $$$$ \\ $$
Commented by liberty last updated on 12/Jan/21
i think it (1/( (√(13))))
$$\mathrm{i}\:\mathrm{think}\:\mathrm{it}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{13}}}\: \\ $$
Commented by Lordose last updated on 12/Jan/21
you are right  I have found an error in my solution  Thanks
$$\mathrm{you}\:\mathrm{are}\:\mathrm{right} \\ $$$$\mathrm{I}\:\mathrm{have}\:\mathrm{found}\:\mathrm{an}\:\mathrm{error}\:\mathrm{in}\:\mathrm{my}\:\mathrm{solution} \\ $$$$\mathrm{Thanks} \\ $$
Answered by MJS_new last updated on 12/Jan/21
tan x =t  t^2 −3t−1=0  (t−u)(t−v)=0 ⇒ u+v=3∧uv=−1  cos x =(1/( (√(t^2 +1))))  cos x_1  cos x_2  =(1/( (√((u^2 +1)(v^2 +1)))))=  =(1/( (√(u^2 v^2 +u^2 +v^2 +1))))=(1/( (√(u^2 v^2 +(u+v)^2 −2uv+1))))=  =(1/( (√((−1)^2 +3^2 −2(−1)+1))))=(1/( (√(13))))
$$\mathrm{tan}\:{x}\:={t} \\ $$$${t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{1}=\mathrm{0} \\ $$$$\left({t}−{u}\right)\left({t}−{v}\right)=\mathrm{0}\:\Rightarrow\:{u}+{v}=\mathrm{3}\wedge{uv}=−\mathrm{1} \\ $$$$\mathrm{cos}\:{x}\:=\frac{\mathrm{1}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{cos}\:{x}_{\mathrm{1}} \:\mathrm{cos}\:{x}_{\mathrm{2}} \:=\frac{\mathrm{1}}{\:\sqrt{\left({u}^{\mathrm{2}} +\mathrm{1}\right)\left({v}^{\mathrm{2}} +\mathrm{1}\right)}}= \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{u}^{\mathrm{2}} {v}^{\mathrm{2}} +{u}^{\mathrm{2}} +{v}^{\mathrm{2}} +\mathrm{1}}}=\frac{\mathrm{1}}{\:\sqrt{{u}^{\mathrm{2}} {v}^{\mathrm{2}} +\left({u}+{v}\right)^{\mathrm{2}} −\mathrm{2}{uv}+\mathrm{1}}}= \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\left(−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} −\mathrm{2}\left(−\mathrm{1}\right)+\mathrm{1}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{13}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *