Menu Close

prove-that-there-exist-unique-intergers-p-and-s-sucb-that-a-bp-s-with-b-2-lt-s-b-2-hence-find-p-and-s-given-that-a-49-and-b-26-




Question Number 63532 by Rio Michael last updated on 05/Jul/19
prove that there exist unique intergers p and s sucb that  a = bp + s with −((∣b∣)/2)< s ≤((∣b∣)/2)  hence find p and s given that a=49 and b=26
$${prove}\:{that}\:{there}\:{exist}\:{unique}\:{intergers}\:{p}\:{and}\:{s}\:{sucb}\:{that} \\ $$$${a}\:=\:{bp}\:+\:{s}\:{with}\:−\frac{\mid{b}\mid}{\mathrm{2}}<\:{s}\:\leqslant\frac{\mid{b}\mid}{\mathrm{2}} \\ $$$${hence}\:{find}\:{p}\:{and}\:{s}\:{given}\:{that}\:{a}=\mathrm{49}\:{and}\:{b}=\mathrm{26} \\ $$
Answered by MJS last updated on 05/Jul/19
a=bp+s ⇒ s=a−bp  case 1: b>0  −(b/2)<a−bp≤(b/2)  (a/b)−(1/2)≤p<(a/b)+(1/2)  case 2: b<0  (b/2)<a−bp≤(b/2)  (a/b)−(1/2)<p≤(a/b)+(1/2)  in both cases:  the width of the interval [(a/b)−(1/2); (a/b)+(1/2)] is 1 ⇒  ⇒ there′s exactly one p∈Z∧((a/b)−(1/2)≤p<(a/b)+(1/2)∨(a/b)−(1/2)<p≤(a/b)+(1/2))  ⇒ s is also unique    a=49∧b=26  ((49)/(26))−(1/2)≤p<((49)/(26))+(1/2)  ((18)/(13))≤p<((31)/(13)) ⇒ p=2  s=a−bp=49−26×2=−3
$${a}={bp}+{s}\:\Rightarrow\:{s}={a}−{bp} \\ $$$$\mathrm{case}\:\mathrm{1}:\:{b}>\mathrm{0} \\ $$$$−\frac{{b}}{\mathrm{2}}<{a}−{bp}\leqslant\frac{{b}}{\mathrm{2}} \\ $$$$\frac{{a}}{{b}}−\frac{\mathrm{1}}{\mathrm{2}}\leqslant{p}<\frac{{a}}{{b}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{case}\:\mathrm{2}:\:{b}<\mathrm{0} \\ $$$$\frac{{b}}{\mathrm{2}}<{a}−{bp}\leqslant\frac{{b}}{\mathrm{2}} \\ $$$$\frac{{a}}{{b}}−\frac{\mathrm{1}}{\mathrm{2}}<{p}\leqslant\frac{{a}}{{b}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{in}\:\mathrm{both}\:\mathrm{cases}: \\ $$$$\mathrm{the}\:\mathrm{width}\:\mathrm{of}\:\mathrm{the}\:\mathrm{interval}\:\left[\frac{{a}}{{b}}−\frac{\mathrm{1}}{\mathrm{2}};\:\frac{{a}}{{b}}+\frac{\mathrm{1}}{\mathrm{2}}\right]\:\mathrm{is}\:\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{there}'\mathrm{s}\:\mathrm{exactly}\:\mathrm{one}\:{p}\in\mathbb{Z}\wedge\left(\frac{{a}}{{b}}−\frac{\mathrm{1}}{\mathrm{2}}\leqslant{p}<\frac{{a}}{{b}}+\frac{\mathrm{1}}{\mathrm{2}}\vee\frac{{a}}{{b}}−\frac{\mathrm{1}}{\mathrm{2}}<{p}\leqslant\frac{{a}}{{b}}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:{s}\:\mathrm{is}\:\mathrm{also}\:\mathrm{unique} \\ $$$$ \\ $$$${a}=\mathrm{49}\wedge{b}=\mathrm{26} \\ $$$$\frac{\mathrm{49}}{\mathrm{26}}−\frac{\mathrm{1}}{\mathrm{2}}\leqslant{p}<\frac{\mathrm{49}}{\mathrm{26}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{18}}{\mathrm{13}}\leqslant{p}<\frac{\mathrm{31}}{\mathrm{13}}\:\Rightarrow\:{p}=\mathrm{2} \\ $$$${s}={a}−{bp}=\mathrm{49}−\mathrm{26}×\mathrm{2}=−\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *