Menu Close

any-hint-about-how-to-prove-by-induction-in-the-Sigma-notion-topic-like-in-




Question Number 64871 by Rio Michael last updated on 22/Jul/19
any hint about how to prove by induction in the Sigma notion topic?  like in Σ
$${any}\:{hint}\:{about}\:{how}\:{to}\:{prove}\:{by}\:{induction}\:{in}\:{the}\:{Sigma}\:{notion}\:{topic}? \\ $$$${like}\:{in}\:\Sigma \\ $$
Commented by mathmax by abdo last updated on 22/Jul/19
you question is not clear....
$${you}\:{question}\:{is}\:{not}\:{clear}…. \\ $$
Commented by Rio Michael last updated on 22/Jul/19
help me know how to prove by mathematical induction when dealing with summation  Σ
$${help}\:{me}\:{know}\:{how}\:{to}\:{prove}\:{by}\:{mathematical}\:{induction}\:{when}\:{dealing}\:{with}\:{summation} \\ $$$$\Sigma \\ $$
Commented by mathmax by abdo last updated on 22/Jul/19
i dont understand what you want but i give some properties of  of  Σ    if we have  (x_i ) _(1≤i≤n)   and (y_i )_(i∈[0,n])  2 sequences of reals  numbers (or complex)  the sum x_1  +x_2 +....+x_k  is writen  Σ_(i=1) ^k  x_i     also we have Σ_(i=1) ^n  x_i  +^− Σ_(i=1) ^n  y_i =Σ_(i=1) ^n (x_i  +^− y_i )  Σ_(i=1) ^n  λ x_i =λ Σ_(i=1) ^n  x_i   (λ ∈R or C)  Σ_(i=1) ^n (1) =n   ,Σ_(i=0) ^n (1) =n+1 ,Σ_(i=1) ^n λ =nλ  Σ_(i=0) ^n  λ =(n+1)λ    , Σ_i  Σ_j  x_(ij) =Σ_j Σ_i x_(ij)   ....
$${i}\:{dont}\:{understand}\:{what}\:{you}\:{want}\:{but}\:{i}\:{give}\:{some}\:{properties}\:{of} \\ $$$${of}\:\:\Sigma\:\:\:\:{if}\:{we}\:{have}\:\:\left({x}_{{i}} \right)\:_{\mathrm{1}\leqslant{i}\leqslant{n}} \:\:{and}\:\left({y}_{{i}} \right)_{{i}\in\left[\mathrm{0},{n}\right]} \:\mathrm{2}\:{sequences}\:{of}\:{reals} \\ $$$${numbers}\:\left({or}\:{complex}\right)\:\:{the}\:{sum}\:{x}_{\mathrm{1}} \:+{x}_{\mathrm{2}} +….+{x}_{{k}} \:{is}\:{writen} \\ $$$$\sum_{{i}=\mathrm{1}} ^{{k}} \:{x}_{{i}} \:\:\:\:{also}\:{we}\:{have}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{x}_{{i}} \:\overset{−} {+}\sum_{{i}=\mathrm{1}} ^{{n}} \:{y}_{{i}} =\sum_{{i}=\mathrm{1}} ^{{n}} \left({x}_{{i}} \:\overset{−} {+}{y}_{{i}} \right) \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \:\lambda\:{x}_{{i}} =\lambda\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{x}_{{i}} \:\:\left(\lambda\:\in{R}\:{or}\:{C}\right) \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \left(\mathrm{1}\right)\:={n}\:\:\:,\sum_{{i}=\mathrm{0}} ^{{n}} \left(\mathrm{1}\right)\:={n}+\mathrm{1}\:,\sum_{{i}=\mathrm{1}} ^{{n}} \lambda\:={n}\lambda \\ $$$$\sum_{{i}=\mathrm{0}} ^{{n}} \:\lambda\:=\left({n}+\mathrm{1}\right)\lambda\:\:\:\:,\:\sum_{{i}} \:\sum_{{j}} \:{x}_{{ij}} =\sum_{{j}} \sum_{{i}} {x}_{{ij}} \:\:…. \\ $$$$ \\ $$
Commented by Rio Michael last updated on 22/Jul/19
well thanks for that
$${well}\:{thanks}\:{for}\:{that} \\ $$
Commented by mathmax by abdo last updated on 23/Jul/19
you are welcome.
$${you}\:{are}\:{welcome}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *