Menu Close

If-I-1-e-e-2-dx-log-x-and-I-2-1-2-e-x-x-dx-then-




Question Number 83077 by mhmd last updated on 27/Feb/20
If   I_1 =∫_e ^e^2   (dx/(log x))  and  I_2 = ∫_( 1) ^2  (e^x /x) dx, then
$$\mathrm{If}\:\:\:{I}_{\mathrm{1}} =\underset{{e}} {\overset{{e}^{\mathrm{2}} } {\int}}\:\frac{{dx}}{\mathrm{log}\:{x}}\:\:\mathrm{and}\:\:{I}_{\mathrm{2}} =\:\underset{\:\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\frac{{e}^{{x}} }{{x}}\:{dx},\:\mathrm{then} \\ $$
Answered by TANMAY PANACEA last updated on 28/Feb/20
t=lnx   (dt/dx)=(1/x)→e^t dt=dx so I_1 =∫_1 ^2 ((e^t dt)/t)=I_2   I_1 =I_2   now  e^t =1+t+(t^2 /(2!))+(t^3 /(3!))+(t^4 /(4!))+...  ∫_1 ^2 ((1+t+(t^2 /(2!))+(t^3 /(3!))+(t^4 /(4!))+...)/t)dt  ∫_1 ^2 ((1/t)+1+(t/(2!))+(t^2 /(3!))+(t^3 /(4!))+...)dt  ∣((lnt)/1)+(t/1)+(t^2 /(2!×2))+(t^3 /(3!×3))+...∣_1 ^2   =ln((2/1))+(2−1)+((2^2 −1^2 )/(2!×2))+((2^3 −1^3 )/(3!×3))+...
$${t}={lnx}\:\:\:\frac{{dt}}{{dx}}=\frac{\mathrm{1}}{{x}}\rightarrow{e}^{{t}} {dt}={dx}\:{so}\:\boldsymbol{{I}}_{\mathrm{1}} =\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{e}^{{t}} {dt}}{{t}}={I}_{\mathrm{2}} \\ $$$$\boldsymbol{{I}}_{\mathrm{1}} ={I}_{\mathrm{2}} \\ $$$${now}\:\:{e}^{{t}} =\mathrm{1}+{t}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{t}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{t}^{\mathrm{4}} }{\mathrm{4}!}+… \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \frac{\mathrm{1}+{t}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{t}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{t}^{\mathrm{4}} }{\mathrm{4}!}+…}{{t}}{dt} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \left(\frac{\mathrm{1}}{{t}}+\mathrm{1}+\frac{{t}}{\mathrm{2}!}+\frac{{t}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{t}^{\mathrm{3}} }{\mathrm{4}!}+…\right){dt} \\ $$$$\mid\frac{{lnt}}{\mathrm{1}}+\frac{{t}}{\mathrm{1}}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}!×\mathrm{2}}+\frac{{t}^{\mathrm{3}} }{\mathrm{3}!×\mathrm{3}}+…\mid_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$={ln}\left(\frac{\mathrm{2}}{\mathrm{1}}\right)+\left(\mathrm{2}−\mathrm{1}\right)+\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{2}!×\mathrm{2}}+\frac{\mathrm{2}^{\mathrm{3}} −\mathrm{1}^{\mathrm{3}} }{\mathrm{3}!×\mathrm{3}}+… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *