Menu Close

If-the-equation-x-2-cx-d-0-has-roots-equal-to-the-fourth-powers-of-the-roots-of-x-2-ax-b-0-where-a-2-gt-4b-then-the-roots-of-x-2-4bx-2b-2-c-0-will-be-




Question Number 98058 by PengagumRahasiamu last updated on 11/Jun/20
If the equation x^2 −cx+d=0 has roots  equal to the fourth powers of the roots  of x^2 +ax+b=0, where a^2 >4b then the  roots of x^2 −4bx+2b^2 −c=0 will be
$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} −{cx}+{d}=\mathrm{0}\:\mathrm{has}\:\mathrm{roots} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{powers}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots} \\ $$$$\mathrm{of}\:{x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0},\:\mathrm{where}\:{a}^{\mathrm{2}} >\mathrm{4}{b}\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{roots}\:\mathrm{of}\:{x}^{\mathrm{2}} −\mathrm{4}{bx}+\mathrm{2}{b}^{\mathrm{2}} −{c}=\mathrm{0}\:\mathrm{will}\:\mathrm{be} \\ $$
Answered by Rio Michael last updated on 11/Jun/20
Both real(one is positive and the other negative)  see how:  let x^2  + ax + b = 0 have roots α and β  then the roots of x^2 −cx +d = 0 are  α^4  and β^4   α + β = −a and αβ = b  also α^4  + β^4  = c and α^4 β^4  = d  ⇒ b^4  = d and α^4  + β^4  = c  (α^2  +β^2 )^2 −2(αβ)^2  = c   [(α + β)^2 −2αβ]−2(αβ)^2  = c    (a^2 −2b^2 )−2b^2  = c  ⇒ 2b^2  + c = (a^2 −2b)^2   2b^2 −c = 4a^2 b−a^2                 = a^2 (4b−a^2 )  now for x^2 −4bx + 2b^2 −c = 0   discriminantD = (4b)^2 −4(1)(2b^2 −c)    = 16b^2 −8b^2  + 4c     = 8b^2  + 4c     = 4(2b^2  + c)     = 4(a^2 −2b)^2  >0 ⇒ real roots  f(0) = 2b^2 −c = a^2 (4b−a^2 ) < 0 ⇒ roots have opposite sign
$$\mathrm{Both}\:\mathrm{real}\left(\mathrm{one}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{negative}\right) \\ $$$$\mathrm{see}\:\mathrm{how}: \\ $$$$\mathrm{let}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\mathrm{0}\:\mathrm{have}\:\mathrm{roots}\:\alpha\:\mathrm{and}\:\beta \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{x}^{\mathrm{2}} −{cx}\:+{d}\:=\:\mathrm{0}\:\mathrm{are}\:\:\alpha^{\mathrm{4}} \:\mathrm{and}\:\beta^{\mathrm{4}} \\ $$$$\alpha\:+\:\beta\:=\:−{a}\:\mathrm{and}\:\alpha\beta\:=\:{b} \\ $$$$\mathrm{also}\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:=\:{c}\:\mathrm{and}\:\alpha^{\mathrm{4}} \beta^{\mathrm{4}} \:=\:{d} \\ $$$$\Rightarrow\:{b}^{\mathrm{4}} \:=\:{d}\:\mathrm{and}\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:=\:{c} \\ $$$$\left(\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta\right)^{\mathrm{2}} \:=\:{c} \\ $$$$\:\left[\left(\alpha\:+\:\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta\right]−\mathrm{2}\left(\alpha\beta\right)^{\mathrm{2}} \:=\:{c} \\ $$$$\:\:\left({a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} \right)−\mathrm{2}{b}^{\mathrm{2}} \:=\:{c}\:\:\Rightarrow\:\mathrm{2}{b}^{\mathrm{2}} \:+\:{c}\:=\:\left({a}^{\mathrm{2}} −\mathrm{2}{b}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{b}^{\mathrm{2}} −{c}\:=\:\mathrm{4}{a}^{\mathrm{2}} {b}−{a}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{a}^{\mathrm{2}} \left(\mathrm{4}{b}−{a}^{\mathrm{2}} \right) \\ $$$$\mathrm{now}\:\mathrm{for}\:{x}^{\mathrm{2}} −\mathrm{4}{bx}\:+\:\mathrm{2}{b}^{\mathrm{2}} −{c}\:=\:\mathrm{0}\: \\ $$$$\mathrm{discriminant}{D}\:=\:\left(\mathrm{4}{b}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{2}{b}^{\mathrm{2}} −{c}\right) \\ $$$$\:\:=\:\mathrm{16}{b}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} \:+\:\mathrm{4}{c}\: \\ $$$$\:\:=\:\mathrm{8}{b}^{\mathrm{2}} \:+\:\mathrm{4}{c}\: \\ $$$$\:\:=\:\mathrm{4}\left(\mathrm{2}{b}^{\mathrm{2}} \:+\:{c}\right) \\ $$$$\:\:\:=\:\mathrm{4}\left({a}^{\mathrm{2}} −\mathrm{2}{b}\right)^{\mathrm{2}} \:>\mathrm{0}\:\Rightarrow\:\mathrm{real}\:\mathrm{roots} \\ $$$${f}\left(\mathrm{0}\right)\:=\:\mathrm{2}{b}^{\mathrm{2}} −{c}\:=\:{a}^{\mathrm{2}} \left(\mathrm{4}{b}−{a}^{\mathrm{2}} \right)\:<\:\mathrm{0}\:\Rightarrow\:\mathrm{roots}\:\mathrm{have}\:\mathrm{opposite}\:\mathrm{sign}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *