Menu Close

In-2x-3y-8-and-5x-Ky-3-find-the-value-of-K-so-that-the-given-system-of-equation-has-infinte-solution-




Question Number 106666 by deep last updated on 06/Aug/20
In 2x+3y=8 and  5x+Ky=3, find the  value of K so that the given system  of equation has infinte solution.
$$\mathrm{In}\:\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{8}\:\mathrm{and}\:\:\mathrm{5}{x}+{Ky}=\mathrm{3},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:{K}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{given}\:\mathrm{system} \\ $$$$\mathrm{of}\:\mathrm{equation}\:\mathrm{has}\:\mathrm{infinte}\:\mathrm{solution}. \\ $$
Commented by bemath last updated on 06/Aug/20
 (((2      3)),((5      k)) )  ((x),(y) ) =  ((8),(3) )  has no solution if Δ = 0   ⇒2k−15 = 0 , k = ((15)/2)
$$\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{5}\:\:\:\:\:\:\mathrm{k}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{8}}\\{\mathrm{3}}\end{pmatrix} \\ $$$$\mathrm{has}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{if}\:\Delta\:=\:\mathrm{0}\: \\ $$$$\Rightarrow\mathrm{2k}−\mathrm{15}\:=\:\mathrm{0}\:,\:\mathrm{k}\:=\:\frac{\mathrm{15}}{\mathrm{2}} \\ $$
Commented by Her_Majesty last updated on 06/Aug/20
yes but “infinite solutions” doesn′t mean  “no solution”
$${yes}\:{but}\:“{infinite}\:{solutions}''\:{doesn}'{t}\:{mean} \\ $$$$“{no}\:{solution}'' \\ $$
Answered by nimnim last updated on 06/Aug/20
The equations will have infinite solution if  (a_1 /a_2 )=(b_1 /b_2 )=(c_1 /c_2 )   i.e (2/5)=(3/k)=(8/3)⇒1=(5/3)×(3/k)×(3/8)=1  ⇒1=((15)/(8k))=1⇒k=((15)/8)
$${The}\:{equations}\:{will}\:{have}\:{infinite}\:{solution}\:{if} \\ $$$$\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{2}} }=\frac{{b}_{\mathrm{1}} }{{b}_{\mathrm{2}} }=\frac{{c}_{\mathrm{1}} }{{c}_{\mathrm{2}} }\:\:\:{i}.{e}\:\frac{\mathrm{2}}{\mathrm{5}}=\frac{\mathrm{3}}{{k}}=\frac{\mathrm{8}}{\mathrm{3}}\Rightarrow\mathrm{1}=\frac{\mathrm{5}}{\mathrm{3}}×\frac{\mathrm{3}}{{k}}×\frac{\mathrm{3}}{\mathrm{8}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}=\frac{\mathrm{15}}{\mathrm{8}{k}}=\mathrm{1}\Rightarrow{k}=\frac{\mathrm{15}}{\mathrm{8}} \\ $$
Commented by Her_Majesty last updated on 06/Aug/20
wrong. with k=((15)/8) we get x=−(8/(15))∧y=((136)/(45))  which is a unique solution
$${wrong}.\:{with}\:{k}=\frac{\mathrm{15}}{\mathrm{8}}\:{we}\:{get}\:{x}=−\frac{\mathrm{8}}{\mathrm{15}}\wedge{y}=\frac{\mathrm{136}}{\mathrm{45}} \\ $$$${which}\:{is}\:{a}\:{unique}\:{solution} \\ $$
Answered by Her_Majesty last updated on 06/Aug/20
 { ((2x+3y=8)),((5x+Ky=3)) :} ⇔  { ((y=−(2/3)x+(8/3))),((y=−(5/k)x+(3/k))) :}  both are linear ⇒ infinite solutions if  (I) = (II) which is impossible if K∈C:  >  −(2/3)=−(5/K)∧(8/3)=(3/K)  K=((15)/2)∧K=(9/8) which is impossible  if K is not a number  −(2/3)x+(8/3)=−(5/K)x+(3/K)  ⇒  K=((3(5x−3))/(2(x−4)))  ⇒   { ((y=−(2/3)x+(8/3))),((y=−(2/3)x+(8/3))) :}
$$\begin{cases}{\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{8}}\\{\mathrm{5}{x}+{Ky}=\mathrm{3}}\end{cases}\:\Leftrightarrow\:\begin{cases}{{y}=−\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{\mathrm{8}}{\mathrm{3}}}\\{{y}=−\frac{\mathrm{5}}{{k}}{x}+\frac{\mathrm{3}}{{k}}}\end{cases} \\ $$$${both}\:{are}\:{linear}\:\Rightarrow\:{infinite}\:{solutions}\:{if} \\ $$$$\left({I}\right)\:=\:\left({II}\right)\:{which}\:{is}\:{impossible}\:{if}\:{K}\in\mathbb{C}: \\ $$$$> \\ $$$$−\frac{\mathrm{2}}{\mathrm{3}}=−\frac{\mathrm{5}}{{K}}\wedge\frac{\mathrm{8}}{\mathrm{3}}=\frac{\mathrm{3}}{{K}} \\ $$$${K}=\frac{\mathrm{15}}{\mathrm{2}}\wedge{K}=\frac{\mathrm{9}}{\mathrm{8}}\:{which}\:{is}\:{impossible} \\ $$$${if}\:{K}\:{is}\:{not}\:{a}\:{number} \\ $$$$−\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{\mathrm{8}}{\mathrm{3}}=−\frac{\mathrm{5}}{{K}}{x}+\frac{\mathrm{3}}{{K}} \\ $$$$\Rightarrow \\ $$$${K}=\frac{\mathrm{3}\left(\mathrm{5}{x}−\mathrm{3}\right)}{\mathrm{2}\left({x}−\mathrm{4}\right)} \\ $$$$\Rightarrow \\ $$$$\begin{cases}{{y}=−\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{\mathrm{8}}{\mathrm{3}}}\\{{y}=−\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{\mathrm{8}}{\mathrm{3}}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *