Question Number 109169 by ZiYangLee last updated on 21/Aug/20
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{1}\centerdot\mathrm{1}!\:+\:\mathrm{2}\centerdot\mathrm{2}!\:+\:\mathrm{3}\centerdot\mathrm{3}!\:+…+{n}\centerdot{n}! \\ $$$$\mathrm{is}\: \\ $$
Answered by Dwaipayan Shikari last updated on 21/Aug/20
$$\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}{n}.{n}!=\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\left({n}+\mathrm{1}\right){n}!−{n}!=\mathrm{2}.\mathrm{1}!−\mathrm{1}!+\mathrm{3}.\mathrm{2}!−\mathrm{2}!+\mathrm{4}.\mathrm{3}!−\mathrm{3}!+.. \\ $$$$=\mathrm{2}!−\mathrm{1}!+\mathrm{3}!−\mathrm{2}!+\mathrm{4}!−\mathrm{3}!+….+\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$=\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$$${Or} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}{n}.{n}!=\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\left({n}+\mathrm{1}\right){n}!−{n}!=\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\left({n}+\mathrm{1}\right)!−{n}!=\mathrm{2}!−\mathrm{1}!+\mathrm{3}!−\mathrm{2}!+….=\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$
Commented by JDamian last updated on 22/Aug/20
Please, correct your notation mistake.