Menu Close

The-number-of-solutions-for-x-from-the-equation-x-2-x-2-0-is-




Question Number 49461 by Pk1167156@gmail.com last updated on 07/Dec/18
The number of solutions for x from  the equation x^2 −∣x∣−2=0  is
$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{for}\:{x}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} −\mid{x}\mid−\mathrm{2}=\mathrm{0}\:\:\mathrm{is} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Dec/18
∣x∣=x  x>0       =−x x<0  x^2 −x−2=0    [considered x>0]  x^2 −2x+x−2=0  x(x−2)+1(x−2)=0  (x−2)(x+1)=0  x=2  but we can not consider x=−1  because already cosidered x>0  now consider x<0  x^2 +x−2=0  x^2 +2x−x−2=0  x(x+2)−1(x+2)=0  (x+2)(x−1)=0  x=−2 but we can not consider x=1 because  we already considerd x<0  solution is x=±2
$$\mid{x}\mid={x}\:\:{x}>\mathrm{0} \\ $$$$\:\:\:\:\:=−{x}\:{x}<\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{2}=\mathrm{0}\:\:\:\:\left[{considered}\:{x}>\mathrm{0}\right] \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+{x}−\mathrm{2}=\mathrm{0} \\ $$$${x}\left({x}−\mathrm{2}\right)+\mathrm{1}\left({x}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}=\mathrm{2}\:\:{but}\:{we}\:{can}\:{not}\:{consider}\:{x}=−\mathrm{1} \\ $$$${because}\:{already}\:{cosidered}\:{x}>\mathrm{0} \\ $$$${now}\:{consider}\:{x}<\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{x}−\mathrm{2}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{x}−{x}−\mathrm{2}=\mathrm{0} \\ $$$${x}\left({x}+\mathrm{2}\right)−\mathrm{1}\left({x}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\left({x}+\mathrm{2}\right)\left({x}−\mathrm{1}\right)=\mathrm{0} \\ $$$${x}=−\mathrm{2}\:{but}\:{we}\:{can}\:{not}\:{consider}\:{x}=\mathrm{1}\:{because} \\ $$$${we}\:{already}\:{considerd}\:{x}<\mathrm{0} \\ $$$${solution}\:{is}\:{x}=\pm\mathrm{2} \\ $$
Answered by mr W last updated on 07/Dec/18
let t=∣x∣≥0  x^2 =∣x∣^2   ⇒t^2 −t−2=0  ⇒(t+1)(t−2)=0  ⇒t=−1 (<0⇒not ok) or t=2 (>0 ⇒ok)  ⇒x=±2  ⇒2 solutions!
$${let}\:{t}=\mid{x}\mid\geqslant\mathrm{0} \\ $$$${x}^{\mathrm{2}} =\mid{x}\mid^{\mathrm{2}} \\ $$$$\Rightarrow{t}^{\mathrm{2}} −{t}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\left({t}+\mathrm{1}\right)\left({t}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow{t}=−\mathrm{1}\:\left(<\mathrm{0}\Rightarrow{not}\:{ok}\right)\:{or}\:{t}=\mathrm{2}\:\left(>\mathrm{0}\:\Rightarrow{ok}\right) \\ $$$$\Rightarrow{x}=\pm\mathrm{2} \\ $$$$\Rightarrow\mathrm{2}\:{solutions}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *